Những câu hỏi liên quan
H24
Xem chi tiết
KV
15 tháng 10 2018 lúc 12:40

Ta có

A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]

= n(n3 -7n2 -6)( n3 -7n2 +6)

Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)

n3 -7n2 +6 = (n-1)(n-2)(n+3)

Do đó:

A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)

Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp

+Tồn tại một  bội của 5 ⇒ A chia hết cho 5

+Tồn tại một bội của 7 ⇒ A chia hết cho 7

+Tồn tại hai bội của 3 ⇒ A chia hết cho 9

+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho

5.7.9.16 =5040.

+ Qua ví dụ 1 rút ra cách làm như sau:

Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).

Bình luận (0)
HK
1 tháng 6 2021 lúc 20:24

n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho   4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TD
1 tháng 6 2018 lúc 14:51

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

Bình luận (0)
PD
Xem chi tiết
NT
26 tháng 10 2022 lúc 15:18

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

Bình luận (0)
PN
Xem chi tiết
PN
Xem chi tiết
NN
Xem chi tiết
NC
Xem chi tiết
NT
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Bình luận (0)
ML
Xem chi tiết
ML
26 tháng 2 2023 lúc 20:19

mình cần giúp gấp

Bình luận (0)
NT
26 tháng 2 2023 lúc 20:23

loading...

Bình luận (0)
LH
Xem chi tiết
TH
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

Bình luận (0)