Phân tích đa thức thành nhân tử: \(f\left(x\right)=2x^5-9x^3+2x^2+x-3\)
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
Phân tích đa thức thành nhân tử :
\(f\left(x\right)-x^5-2x^4-3x^3-4x^2+2\)
Phân tích đa thức thành nhân tử :\(\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8\)
Đặt \(x^2-2x+4=a\)
Khi đó \(\left(x^2-2x+3\right)\left(x^2-2x+5\right)-8=\left(a-1\right)\left(a+1\right)-8\)
\(=a^2-1-8\)
\(=a^2-9\)
\(=\left(a-3\right)\left(a+3\right)\)
\(=\left(x^2-2x+4-3\right)\left(x^2-2x+4+3\right)\)
\(=\left(x^2-2x+1\right)\left(x^2-2x+7\right)\)
\(=\left(x-1\right)^2\left(x^2-2x+7\right)\)
Phân tích các đa thức sau thành nhân tử: \(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
(x2+2x)+9x2+18x+20
=(x2+2x)+9(x2+2x)+20
Đặt t=x2+2x đc:
t+9t+20=10t+20=10(t+2)
Thay t=x2+2x vào đc:
10(x2+2x+2)
phân tích đa thức thành nhân tử :
a, \( \left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
\(\left(x-5\right)^2-4\left(x-3\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2\)
\(=\left(x-5\right)^2+2\left(2x-1\right)\left(x-5\right)+\left(2x-1\right)^2-4\left(x-3\right)^2\)
\(=\left(x-5+2x-1\right)^2-\left(2x-6\right)^2\)
\(=\left(3x-6\right)^2-\left(2x-6\right)^2\)
\(=\left[\left(3x-6\right)-\left(2x-6\right)\right].\left[\left(3x-6\right)+\left(2x-6\right)\right]\)
\(=\left(3x-6-2x+6\right)\left(3x-6+2x-6\right)\)
\(=\left(5x-12\right)x\)
Phân tích đa thức thành nhân tử:
\(x^3-8+2x\left(x-2\right)\)
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
Cho đa thức: \(f\left(x\right)=x^5-5x^4+9x^3-9x^2+8x-4\)
a) Phân tích đa thức f(x) thành nhân tử
b) Tìm các giá trị nguyện dương của x để f(x)=20
a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)
=x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)
=(x^4-4x^3+5x^2-4x+4)(x-1)
=[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)
=(x^3-2x^2+x-2)(x-2)(x-1)
=(x^2+1)(x-2)^2(x-1)
Phân tích đa thức thành nhân tử
\(5x\left(2x+3\right)+6x+9\)
\(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)
a: \(5x\left(2x+3\right)+6x+9\)
\(=5x\left(2x+3\right)+\left(6x+9\right)\)
\(=5x\left(2x+3\right)+3\left(2x+3\right)\)
\(=\left(2x+3\right)\left(5x+3\right)\)
b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)
\(=\left(x+4\right)\left(3x+48+5\right)\)
=(x+4)(3x+53)
Phân tích đa thức thành nhân tử:
a. \(x^6-x^4-9x^3=9x^2\)
b. \(x^4+x^3+6x^2+5x+5\)
c. \(\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)