Những câu hỏi liên quan
TN
Xem chi tiết
LA
Xem chi tiết
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 10:05

Đặt \(\left\{{}\begin{matrix}\sqrt{y+z-4}=a>0\\\sqrt{z+x-4}=b>0\\\sqrt{x+y-4}=c>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{b^2+c^2-a^2+4}{2}\\y=\dfrac{c^2+a^2-b^2+4}{2}\\z=\dfrac{a^2+b^2-c^2+4}{2}\end{matrix}\right.\).

\(2P=\dfrac{b^2+c^2-a^2+4}{a}+\dfrac{c^2+a^2-b^2+4}{b}+\dfrac{a^2+b^2-c^2+4}{c}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}-a-b-c\).

Áp dụng bất đẳng thức AM - GM:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\left(\dfrac{a^2}{b}+b\right)+\left(\dfrac{b^2}{c}+c\right)+\left(\dfrac{c^2}{a}+a\right)-\left(a+b+c\right)\ge2a+2b+2c-a-b-c=a+b+c\).

Tương tự, \(\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\).

Do đó \(2P\ge a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}=\left(a+\dfrac{4}{a}\right)+\left(b+\dfrac{4}{b}\right)+\left(c+\dfrac{4}{c}\right)\ge4+4+4=12\Rightarrow P\ge6\).

Đẳng thức xảy ra khi a = b = c = 2 hay x = y = z = 4.

Vậy Min P = 6 khi x = y = z = 4.

Bình luận (0)
NL
14 tháng 1 2021 lúc 10:25

\(P=\dfrac{4x}{2.2.\sqrt{y+z-4}}+\dfrac{4y}{2.2.\sqrt{x+z-4}}+\dfrac{4z}{2.2.\sqrt{x+y-4}}\)

\(P\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\ge4.\dfrac{3}{2}=6\)

Dấu "=" xảy ra khi \(x=y=z=4\)

Bình luận (0)
JK
Xem chi tiết
MP
Xem chi tiết
HN
12 tháng 1 2018 lúc 22:30

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+3xyz-xyz=0\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz=0\)

\(\Leftrightarrow x^2y+xy^2+x^2z+xyz+y^2z+yz^2+xz^2+xyz=0\)

\(\Leftrightarrow x\left(xy+y^2+xz+yz\right)+z\left(y^2+yz+xz+xy\right)=0\)

\(\Leftrightarrow x\left[y\left(x+y\right)+z\left(x+y\right)\right]+z\left[y\left(y+z\right)+x\left(y+z\right)\right]=0\)

\(\Leftrightarrow x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

* x = -y

\(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}}-\dfrac{1}{x^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{z^{2007}}\)(*)

\(\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}=\dfrac{1}{x^{2007}-x^{2007}+z^{2007}}=\dfrac{1}{z^{2007}}\)(*)

Từ (*) và (**) \(\Rightarrow\) đpcm

Tương tự xét y = -z và z = -x

Vậy nếu x, y, z khác 0 và x + y +z khác 0 thì \(\dfrac{1}{x^{2007}}+\dfrac{1}{y^{2007}}+\dfrac{1}{z^{2007}}=\dfrac{1}{x^{2007}+y^{2007}+z^{2007}}\).

Bình luận (0)
NB
Xem chi tiết
LL
3 tháng 9 2021 lúc 10:46

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

Bình luận (0)
MA
Xem chi tiết
H24
2 tháng 3 2023 lúc 21:08

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`

Bình luận (0)
HN
Xem chi tiết
MH
25 tháng 4 2023 lúc 19:54

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

Bình luận (0)
NH
Xem chi tiết
NH
18 tháng 8 2018 lúc 9:39

mình k ghi lại đề nữa ta có

\(1\ge\dfrac{4^2}{x+24}+\dfrac{5^2}{y+16}+\dfrac{3^2}{z+4}\ge\dfrac{\left(4+5+3\right)^2}{x+y+z+24+16+4}=\dfrac{12^2}{x+y+z+44}\)

=>x+y+z+44>=12^2=144=> x+y+z=100

đặt x+y+z=a(a>=100)

\(x+y+z+\dfrac{1}{x+y+z}=a+\dfrac{1}{a}=\dfrac{a}{10000}+\dfrac{1}{a}+\dfrac{9999a}{10000}\ge\dfrac{2}{100}+\dfrac{9999a}{10000}\)

do a>=100 nên

\(a+\dfrac{1}{a}\ge\dfrac{2}{100}+\dfrac{9999}{100}=\dfrac{10001}{100}\) khi a= 100 hay x+y+z=100

Bình luận (0)