Những câu hỏi liên quan
CG
Xem chi tiết
DH
23 tháng 7 2017 lúc 10:43

GTNN nak !!!

\(B=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)

\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(B_{min}=2\) tại \(x=-3;y=1\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
ND
28 tháng 9 2018 lúc 21:33

a) A = x^2 -10x + 27
Ta có:
A = x^2 - 10x + 27
   = x^2 - 2.x.5 + 5^2  + 2
   = (x-5)^2 + 2
Do (x-5)^2 > 0 ( với mọi x )
=> (x-5)^2 + 2 > 2 (với mọi x)
=> Amin = 2
Dấu "=" xãy ra khi và chỉ khi x-5=0  <=> x=5
Vậy : GTNN của A bằng 2 tại x = 5

Bình luận (0)
ND
28 tháng 9 2018 lúc 21:41

b, B = 4x^2 + 4x + 20
Ta có :
 B = 4x^2 + 4x + 20
     = (2x)^2 + 2.2x.1 + 1^2 + 19
     = (2x+1)^2  + 19
Do (2x+1)^2 > 0 ( với mọi x)
=> (2x+1)^2 + 19 > 19 (với mọi x)
=> B > 19 (mọi x)
=> Bmin = 19
Dấu "=" xãy ra <=> 2x+1 = 0
<=> x = -1/2
Vậy : GTNN của B =19 tại x = -1/2

Bình luận (0)
TL
Xem chi tiết
PG
3 tháng 9 2021 lúc 20:15

\(C=x^2-4xy+5y^2+10x-22y+28\)

    \(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)

    \(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
ML
17 tháng 11 2021 lúc 18:25

\(=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ =\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\\ =\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy GTNN của biểu thức là 2

Bình luận (0)
TN
Xem chi tiết
NT
29 tháng 5 2022 lúc 0:47

a: \(A=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)

Dấu '=' xảy ra khi x=1 và y=-2

b: \(B=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

Bình luận (0)
TD
Xem chi tiết
NL
13 tháng 7 2017 lúc 9:38

\(G=x^2-4xy+5y^2+10x-22y+28.\)

\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Do \(\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x\)nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Vậy \(MinG=2\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Bình luận (0)
TM
13 tháng 7 2017 lúc 9:37

\(G=x^2-4xy+5y^2+10x-22y+28\)

\(G=x^2-2x\left(2y-5\right)+5y^2-22y+28\)

\(G=x^2-2x\left(2y-5\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)

\(G=x^2-2x\left(2y-5\right)+\left(2x-5\right)^2+\left(y-1\right)^2+2\)

\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x=-3;y=1

Bình luận (0)
NU
Xem chi tiết
DH
16 tháng 10 2017 lúc 19:00

\(B=x^2-4xy+5y^2+10x-22y+28\)

\(=\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(B_{min}=2\) tại \(x=-3;y=1\)

Bình luận (0)
MQ
Xem chi tiết
SG
11 tháng 7 2017 lúc 20:55

C = x2 - 4xy + 5y2 + 10x - 22y + 28

= (x2 - 4xy + 4y2) + (10x - 20y) + (y2 - 2y) + 28

= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2

= (x - 2y)2 + 2.(x - 2y).5 + 52 + (y - 1)2 + 2

= (x - 2y + 5)2 + (y - 1)2 + 2

\(\left(x-2y+5\right)^2\ge0\forall x;y\); \(\left(y-1\right)^2\ge0\forall y\) nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)

hay \(C\ge2\forall x;y\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Vậy ...

Bình luận (0)