Cho tam giác ABC có AD BE CF là 3 đường phân giác. CMR DB/DC . EC/EA . FA/FB =1
cho tam gics ABC có các đường phân giác AD, BE, CF
a, CM: DB/DC x EC/EA x FA/FB=1
b, C/m: 1/AD + 1/BE = 1/CF> 1/BC + 1/CA + 1/AB
Cho tam giác ABC có ba đường phân giác AD, BE và CF. Chứng minh: (DB)/(DC) * (EC)/(EA) * (FA)/(FB) = 1
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
Cho tam giác ABC có ba đường phân giác AD, BE và CF. Chứng minh: (DB)/(DC) * (EC)/(EA) * (FA)/(FB) = 1
DB/DC=AB/AC
EC/EA=BC/BA
FA/FB=CA/CB
=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1
Cho tam giác ABC có các đường phân giác AD,BE,CF(D ∈ BC, E ϵ AC, F ∈ AB). Tính \(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=?\)
áp dụng định lý phân giác ta có:\(\left\{{}\begin{matrix}\dfrac{DB}{DC}=\dfrac{AB}{AC}\\\dfrac{EC}{EA}=\dfrac{BC}{AB}\\\dfrac{FA}{FB}=\dfrac{AC}{BC}\end{matrix}\right.\)
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=\dfrac{AB}{AC}.\dfrac{BC}{AB}.\dfrac{AC}{BC}=1\)
Cho △ABC có các đường phân giác AD,BE và CF
Chứng minh : \(\dfrac{DB}{DC}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}=1\)
Áp dụng t/c đường phân giác, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\) ( 1 )
\(\dfrac{BC}{BA}=\dfrac{EC}{EA}\) ( 2 )
\(\dfrac{CA}{CB}=\dfrac{FA}{FB}\) ( 3 )
Nhân từng vế (1);(2);(3) ta được:
\(\dfrac{AB}{AC}\times\dfrac{BC}{BA}\times\dfrac{CA}{CB}=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)
\(\Leftrightarrow1=\dfrac{BD}{CD}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}\)
ADAD là đường phân giác ˆB→BCBA=ECEAB^→BCBA=ECEA
CFCF là đường phân giác →DBDC.ECEA.FAFB=ABAC.BCBA.CACB=AB.BC.CAAC.BA.CB=1
1) Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau ở H. CMR HD/AD + HE/BE + HF/CF = 1
2)Tam giác ABC , D là trung điểm của AB . Vẽ DH vuông với BC , H thuộc BC. CMR S tam giác ABC =DH.BC
Cho tam giác ABC : AD; BE và CF là 3 đường cao, H là trực tâm. CMR : DH là phân giác góc FDE.
bÀI 1: cho tam giác ABC phân giác AD, BE,CF. Biết BC= 36cm; CA=30cm; AB= 18cm.
Tính độ dài các đoạn BD; DC; EA; EC; FA; FB
Bài 2: gọi AD, BE, CF là 3 đường phân giác của tam giác ABC.
Chứng minh rằng: \(\dfrac { DB} {DC}. \dfrac { EC} {EA} . \dfrac { FA} { FB} =1\)
Cho tam giác ABC, các đường phân giác AD, BE, CF. Tính tích DB/DC . EC/EA . FA/FB
Áp dụng tính chất đường phân giac ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\) (2)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
Nhân các vế tương ứng của các đẳng thức (1); (2); (3) ta được:
\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=1\)