Những câu hỏi liên quan
NM
Xem chi tiết
TT
2 tháng 9 2020 lúc 15:24

\(ĐKXĐ:x\ge\frac{1}{2}\)

Phương trình đã cho tương đương :

\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)

\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)

\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)

Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :

\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)

Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)

Khi đó pt (*) có dạng :

\(3x.a=2.\left(x^2-a^2\right)\)

\(\Leftrightarrow2x^2-3xa-2a^2=0\)

\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)

\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)

\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)

+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)

\(\Leftrightarrow x^2=4.\left(2x-1\right)\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )

+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)

\(\Leftrightarrow4x^2=2x-1\)

\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )

Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
NT
25 tháng 8 2023 lúc 18:08

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

Bình luận (0)
KB
Xem chi tiết
SK
8 tháng 7 2018 lúc 20:27

Trả lời

x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">Ta có: \(x^2-5x+14=\left(x-3\right)^2+x+5\ge x+5\ge x+1+4\ge4\sqrt{x+1}\)x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">\(\Rightarrow VT\ge VP\)x2−5x+14≐(x−3)2+x+5≥x+5≥x+1+4≥4x+1" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:14px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-wrap:normal" class="MathJax_CHTML mjx-chtml">Vậy để \(VT\ge VP\Leftrightarrow x=3\)(dấu "=" xảy ra)   
Bình luận (0)
NN
Xem chi tiết
NT
3 tháng 11 2018 lúc 20:33

ĐKXĐ:x\(\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\)

\(\Rightarrow\hept{\begin{cases}a^2=x+1\\a^2-1=x\\x^2=a^4-2a^2+1\end{cases}}\)

Khi đó pt trên trở thành : \(4a=a^4-2a^2+1-5\left(a^2-1\right)+14\)

\(\Leftrightarrow a^4-2a^2+1-5a^2+5+14-4a=0\)

\(\Leftrightarrow a^4-7a^2-4a+20=0\)

\(\Leftrightarrow a^4-4a^2-3a^2+6a-10a+20=0\)

\(\Leftrightarrow a^2\left(a-2\right)\left(a+2\right)-3a\left(a-2\right)-10\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3+2a^2-3a-10\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a^3-2a^2+4a^2-8a+5a-10\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+4a+5\right)=0\)

\(\Leftrightarrow\left(a-2\right)^2=0\)(vì a2+4a+5=(a+2)2+1\(\ge1>0\))

\(\Leftrightarrow x=2\)(thỏa mãn ĐKXĐ)

Bình luận (0)
MD
Xem chi tiết
NL
13 tháng 12 2020 lúc 16:58

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 16:58

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 16:58

d.

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)

\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)

\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)

\(\Leftrightarrow1-\dfrac{1}{ab}=0\)

\(\Leftrightarrow ab=1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)

\(\Leftrightarrow x^3-1=1\)

\(\Leftrightarrow x=\sqrt[3]{2}\)

Bình luận (0)
TT
Xem chi tiết
TN
3 tháng 1 2017 lúc 18:02

Đk:\(x\ge-1\)

\(pt\Leftrightarrow x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)^2=0\\\left(\sqrt{x+1}-2\right)^2=0\end{cases}}\)\(\Leftrightarrow x=3\)

Bình luận (0)
TP
Xem chi tiết
HT
Xem chi tiết
H24
13 tháng 3 2023 lúc 16:09

\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)

Bình phương 2 vế pt , ta có :

\(x^2-5x-1=x-1\)

\(\Rightarrow x^2-5x-x=-1+1\)

\(\Rightarrow x^2-6x=0\)

\(\Rightarrow x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)

Vậy pt có tập nghiệm \(S=\left\{6\right\}\)

Bình luận (0)
TT
13 tháng 3 2023 lúc 16:14

loading...  

Bình luận (0)
NT
13 tháng 3 2023 lúc 20:10

\(x^2-2x+2m^2-3m+1=0\Leftrightarrow x^2-2x+1=-2m^2+3m\)

Cho f(x) = x^2 - 2x + 1 

-> I(1;0) lập BBT ( bạn tự lập nhé ) 

Để pt có nghiệm khi \(-2m^2+3m\ge0\Leftrightarrow0\le m\le\dfrac{3}{2}\)

 

 

Bình luận (0)
KN
Xem chi tiết