Violympic toán 9

MD

giải pt :

a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)

b0 \(4\sqrt{x+1}=x^2-5x+14\)

c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)

d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)

NL
13 tháng 12 2020 lúc 16:58

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 16:58

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Bình luận (0)
NL
13 tháng 12 2020 lúc 16:58

d.

ĐKXĐ: \(x>1\)

\(\Leftrightarrow\dfrac{x^2+x+1-1}{\sqrt{x^2+x+1}}=\dfrac{1-\left(x-1\right)}{\sqrt{x-1}}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x-1}=b>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2-1}{a}=\dfrac{1-b^2}{b}\)

\(\Leftrightarrow a-\dfrac{1}{a}=\dfrac{1}{b}-b\)

\(\Leftrightarrow a+b-\dfrac{a+b}{ab}=0\)

\(\Leftrightarrow\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=0\)

\(\Leftrightarrow1-\dfrac{1}{ab}=0\)

\(\Leftrightarrow ab=1\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=1\)

\(\Leftrightarrow x^3-1=1\)

\(\Leftrightarrow x=\sqrt[3]{2}\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
TS
Xem chi tiết
NL
Xem chi tiết
BL
Xem chi tiết
NH
Xem chi tiết
NY
Xem chi tiết
KN
Xem chi tiết
HL
Xem chi tiết
KN
Xem chi tiết