Những câu hỏi liên quan
TT
Xem chi tiết
PB
Xem chi tiết
CT
10 tháng 7 2017 lúc 17:26

 

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 9 2019 lúc 3:33

Bình luận (0)
IT
Xem chi tiết
NT
16 tháng 2 2021 lúc 20:51

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-30^0=60^0\)

Ta có: CD là tia phân giác của \(\widehat{ACB}\)(gt)

nên \(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}=\dfrac{60^0}{2}=30^0\)

mà \(\widehat{DBC}=30^0\)(gt)

nên \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔBCD có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔBCD cân tại D(Định lí đảo của tam giác cân)

Xét ΔACD vuông tại A và ΔHCD vuông tại H có 

CD chung

\(\widehat{ACD}=\widehat{HCD}\)(CD là tia phân giác của \(\widehat{ACH}\))

Do đó: ΔACD=ΔHCD(Cạnh huyền-góc nhọn)

Suy ra: CA=CH(hai cạnh tương ứng)

Xét ΔCAH có CA=CH(cmt)

nên ΔCAH cân tại C(Định nghĩa tam giác cân)

Xét ΔCHA cân tại C có \(\widehat{ACH}=60^0\)(cmt)

nên ΔCHA đều(Dấu hiệu nhận biết tam giác đều)

b) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan\widehat{B}\)

\(\Leftrightarrow AC=5\cdot\tan30^0\)

hay \(AC=\dfrac{5\sqrt{3}}{3}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+\left(\dfrac{5\sqrt{3}}{3}\right)^2=\dfrac{100}{3}\)

hay \(BC=\dfrac{10\sqrt{3}}{3}cm\)

Vậy: \(AC=\dfrac{5\sqrt{3}}{3}cm\)\(BC=\dfrac{10\sqrt{3}}{3}cm\)

Bình luận (1)
PB
Xem chi tiết
CT
24 tháng 11 2017 lúc 3:36

Bình luận (0)
LT
Xem chi tiết
LT
26 tháng 3 2017 lúc 9:04

a) + AH2 = BH.CH = 9.16 = 144 AH = 12cm

+ AB2 = BH. BC = 9.25 AB  = 15cm

+ AC2 =  CH.BC = 16.25 AC = 20cm  

b) Chứng minh được tứ giác ADHE là hình chữ nhật  

c) +HD.AB = HA.HB HD = HA.HB/AB= 12.9/15 = 7,2cm

+HE.AC = HA.HC HE = HA.HC /AC = 12.16/20 = 9,6cm

+ Chu vi ADHE:  (HD + HE ).2 = (7,2 + 9,6).2 = 33,6(cm)  

 + SADHE = HD.HE = 7,2. 9,6  =  69,12(cm2)  



 

Bình luận (0)
NG
1 tháng 7 2022 lúc 10:49

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

Bình luận (0)
H24
Xem chi tiết
NM
16 tháng 9 2021 lúc 18:29

\(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=3,24\left(cm\right)\\HC=\dfrac{AC^2}{BC}=10,24\left(cm\right)\\AH=\sqrt{3,24\cdot10,24}=5,76\left(cm\right)\end{matrix}\right.\)

Bình luận (1)
VB
Xem chi tiết
NT
14 tháng 4 2023 lúc 13:38

2:

a: Xét ΔBAD vuông  tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE
góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE
DE<DC

=>AD<DC
d: Xét ΔBFC co BA/AF=BE/EC

nên AE//CF

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2018 lúc 4:16

Áp dụng định lý Py – ta – go ta có:  A C = ( B C 2 - A B 2 ) = ( 52 - 32 ) = 4 ( c m )

Δ ABC, AD là đường phân giác của góc BACˆ ( D ∈ BC )

Ta có: DB/DC = AB/AC hay DB/AB = DC/AC

Khi đó ta có: DB/DC = AB/AC ⇒ DB/( DB + DC ) = AB /( AB + AC )

hay DB/5 = 3/( 3 + 4) ⇒ DB = 15/7 cm; DC = 20/7 ( cm )

Chọn đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 11 2018 lúc 2:03

Áp dụng định lý Py – ta – go ta có:  A C = ( B C 2 - A B 2 ) = ( 5 2 - 3 2 ) = 4 ( c m )

Δ ABC, AD là đường phân giác của góc BACˆ ( D ∈ BC )

Ta có: DB/DC = AB/AC hay DB/AB = DC/AC

Khi đó ta có: DB/DC = AB/AC ⇒ DB/(DB + DC) = AB/(AB + AC)

hay DB/5 = 3/(3 + 4) ⇒ DB = 15/7 cm; DC = 20/7 ( cm )

Chọn đáp án B.

Bình luận (0)