Những câu hỏi liên quan
NU
Xem chi tiết
NL
25 tháng 3 2019 lúc 13:13

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (1)
MK
Xem chi tiết
PQ
7 tháng 7 2019 lúc 10:31

\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)

\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)

Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)

=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)

\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)

Bình luận (0)
ST
Xem chi tiết
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
BT
Xem chi tiết
TN
8 tháng 4 2018 lúc 9:50

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2-4a^2-4b^2-4c^2+4ab+4ac+4bc=0\)

\(\Rightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)

\(\Rightarrow-\left(a^2-2ab+b^2\right)-\left(b^2-2bc+c^2\right)-\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(a-c\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right)\)

Bình luận (0)
NL
Xem chi tiết
AH
27 tháng 6 2020 lúc 0:45

Lời giải:

Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.

BĐT cần chứng minh tương đương với:

$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$

$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$

Áp dụng BĐT Bunhiacopxky:

$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$

$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$

BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
H24
4 tháng 7 2020 lúc 10:04

SOS là ra, khá đơn giản. Ta có:

$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$

Đẳng thức xảy ra khi $a=b=c.$

Bình luận (0)
NL
Xem chi tiết
PQ
27 tháng 6 2020 lúc 19:33

a,b,c>0 

\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
IY
Xem chi tiết
ND
15 tháng 9 2019 lúc 19:24

Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)

Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)

Bình luận (0)