Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
XO
Xem chi tiết
VD
18 tháng 3 2022 lúc 21:53

1, ĐKXĐ:\(x\ne2,y\ne1\)

Đặt `1/(x-2)` = a, `1/(y-1)` = b

\(Hệ.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\\b=\dfrac{3}{5}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{y-1}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\3y-3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\\y=\dfrac{8}{3}\end{matrix}\right.\)\(2,\Delta'=\left[-\left(m+1\right)\right]^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m-1\ne0\Leftrightarrow m\ne1\)

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=4m\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-x_1x_2=3\\ \Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=3\\ \Leftrightarrow\left(2m+2\right)^2-5.4m-3=0\\ \Leftrightarrow4m^2+8m+4-20m-3=0\\ \Leftrightarrow4m^2-12m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 4 2021 lúc 22:04

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

Bình luận (0)
H24
6 tháng 4 2021 lúc 22:28

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

Bình luận (0)
AQ
Xem chi tiết
NT
21 tháng 9 2021 lúc 22:00

a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

Bình luận (0)
DV
Xem chi tiết
NM
24 tháng 12 2021 lúc 8:12

\(ĐK:x\ne-1;y\ne2\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{2-y}=-1\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=-2\left(vn\right)\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=2\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Bình luận (0)
NT
24 tháng 12 2021 lúc 8:13

Đặt x/x+1=a

y/2-y=b

\(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2-b=2-\left(-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3x+3\\y=y-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 2 2021 lúc 13:11

ĐKXĐ : \(xy\ne0\)

- Đặt \(x+\dfrac{1}{y}=t\)

\(\Rightarrow t^2=x^2+\dfrac{1}{y^2}+\dfrac{2x}{y}\)

\(\Rightarrow x^2+\dfrac{1}{y^2}=t^2-\dfrac{2x}{y}\)

Lại có từ PT ( II ) : \(\dfrac{x}{y}=3-\left(x+\dfrac{1}{y}\right)=3-t\)

\(\Rightarrow\dfrac{2x}{y}=6-2t\)

- Thay vào PT ( I ) ta được : \(t^2-\left(6-2t\right)+3-t=3\)

\(\Rightarrow t^2-6+2t+3-t-3=0\)

\(\Rightarrow t^2+t-6=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\)

TH1 : t = 2 .

=> \(x=y\)

Thay lại vào PT ( II ) ta được : \(x+\dfrac{1}{x}+1=3\)

\(\Rightarrow x^2+1-2x=0\)

\(\Rightarrow x=y=1\) ( TM )

TH2 : t = -3 .

=> \(x=6y\)

Thay lại vào PT ( II ) ta được : \(6y+\dfrac{1}{y}+6-3=0\)

\(\Rightarrow6y^2+1+3y=0\)

Vô nghiệm .

Vậy hệ phương trình có tập nghiệm \(S=\left\{\left(1;1\right)\right\}\)

 

 

Bình luận (1)
AQ
Xem chi tiết
NT
21 tháng 9 2021 lúc 22:46

b: Ta có: \(\left\{{}\begin{matrix}\left(x+5\right)\left(y-4\right)=xy\\\left(x+5\right)\left(y+12\right)=xy\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy-4x+5y-20-xy=0\\xy+12x+5y+60-xy=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+5y=20\\12x+5y=-60\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-16y=80\\-4x+5y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\-4x=20-5y=20-5\cdot\left(-5\right)=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-5\\x=-\dfrac{45}{4}\end{matrix}\right.\)

Bình luận (0)
DV
Xem chi tiết
NM
24 tháng 12 2021 lúc 8:04

\(ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=4\\\dfrac{2}{x}+\dfrac{3}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+1=2\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\left(tm\right)\)

Bình luận (0)
PL
Xem chi tiết
NG
16 tháng 2 2022 lúc 18:14

Đặt \(\left\{{}\begin{matrix}\dfrac{x}{x-1}=a\\\dfrac{1}{y+2}=b\end{matrix}\right.\)

\(\Rightarrow\)Ta có hệ mới: \(\left\{{}\begin{matrix}3a-2b=4\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\cdot\left(3a-2b\right)=2\cdot4\\3\left(2a+b\right)=3\cdot5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6a-4b=8\left(1\right)\\6a+3b=15 \left(2\right)\end{matrix}\right.\)

Lấy (2)-(1) ta đc:

\(\Rightarrow7b=7\Rightarrow b=1\Rightarrow2a+1=5\Rightarrow a=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{x-1}=2\\\dfrac{1}{y+2}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(x-1\right)\\1=y+2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Bình luận (0)
TH
16 tháng 2 2022 lúc 18:14

Với \(x\ne1;y\ne-2\)

hpt <=>\(\left\{{}\begin{matrix}\dfrac{3x}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{4x}{x-1}+\dfrac{2}{y+2}=10\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\dfrac{7x}{x-1}=14\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\dfrac{x}{x-1}=2\\2.2+\dfrac{1}{y+2}=5\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}2x-2=x\\\dfrac{1}{y+2}=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y+2=1\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Bình luận (0)
AQ
Xem chi tiết
NM
21 tháng 9 2021 lúc 21:10

Đặt \(\dfrac{1}{y-1}=a\), hpt tở thành

\(\left\{{}\begin{matrix}\dfrac{5}{x+1}+a=10\\\dfrac{1}{x-2}+3a=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{15}{x+1}+3a=30\left(1\right)\\\dfrac{1}{x-1}+3a=18\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\), ta được:

\(\dfrac{15}{x+1}-\dfrac{1}{x-1}=12\\ \Leftrightarrow\dfrac{15x-15-x-1}{\left(x-1\right)\left(x+1\right)}=12\\ \Leftrightarrow12x^2-12=14x-16\\ \Leftrightarrow12x^2-14x+4=0\\ \Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Với \(x=\dfrac{1}{2}\Leftrightarrow\dfrac{10}{3}+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{10y-7}{3\left(y-1\right)}=10\)

\(\Leftrightarrow30y-30=10y-7\Leftrightarrow y=\dfrac{23}{20}\)

Với \(x=\dfrac{2}{3}\Leftrightarrow3+\dfrac{1}{y-1}=10\Leftrightarrow\dfrac{1}{y-1}=7\Leftrightarrow7y-7=1\Leftrightarrow y=\dfrac{8}{7}\)

Vậy \(\left(x;y\right)=\left\{\left(\dfrac{1}{2};\dfrac{23}{20}\right);\left(\dfrac{2}{3};\dfrac{8}{7}\right)\right\}\)

Bình luận (0)