DV

Giải hệ phương trình sau : \(\left\{{}\begin{matrix}\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\\\dfrac{x}{x+1}+\dfrac{y}{2-y}=2\end{matrix}\right.\) với x, y ∈ Z

NM
24 tháng 12 2021 lúc 8:12

\(ĐK:x\ne-1;y\ne2\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{2-y}=-1\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0y=-2\left(vn\right)\\\dfrac{x}{x+1}+\dfrac{2y}{2-y}=2\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Bình luận (0)
NT
24 tháng 12 2021 lúc 8:13

Đặt x/x+1=a

y/2-y=b

\(\Leftrightarrow\left\{{}\begin{matrix}a+2b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1\\a=2-b=2-\left(-1\right)=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3x+3\\y=y-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
DV
Xem chi tiết
LJ
Xem chi tiết
DV
Xem chi tiết
DV
Xem chi tiết
NA
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết