\(4\dfrac{1}{2}\div(2,5-3\dfrac{3}{4})+(\dfrac{-1}{2})^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\dfrac{-2}{7}-\dfrac{1}{4}\)
\(\dfrac{-1}{2}.\dfrac{4}{9}+\dfrac{3}{7}\div\dfrac{15}{14}\)
\(\left(\dfrac{-3}{4}+\dfrac{7}{10}\right)\div\left(\dfrac{-1}{5}\right)-\dfrac{2}{9}\)
a: =-8/28-7/28=-15/28
b: \(=\dfrac{-4}{18}+\dfrac{3}{7}\cdot\dfrac{14}{15}=\dfrac{-2}{9}+\dfrac{14}{15}=\dfrac{-10+42}{45}=\dfrac{32}{45}\)
c: \(=\dfrac{-3\cdot5+7\cdot2}{20}\cdot\dfrac{-5}{1}-\dfrac{2}{9}\)
\(=\dfrac{-7}{4}-\dfrac{2}{9}=\dfrac{-63}{36}-\dfrac{8}{36}=-\dfrac{71}{36}\)
\(a,\dfrac{-2}{7}-\dfrac{1}{4}\)
\(=\dfrac{-8}{28}-\dfrac{7}{28}\)
\(=\dfrac{-15}{28}\)
\(b,\dfrac{-1}{2}.\dfrac{4}{9}+\dfrac{3}{7}\div\dfrac{15}{14}\)
a) \(\dfrac{5}{2}\) \(+\dfrac{2}{3}-\dfrac{3}{4}\)
b)\(\dfrac{4}{5}-\dfrac{1}{2}+\dfrac{1}{3}\)
c)\(\dfrac{2}{5}\times\dfrac{1}{2}\div\dfrac{1}{3}\)
a, 5/2 + 2/3 - 3/4
= 19/6 - 3/4
= 29/12
b, 4/5 - 1/2 + 1/3
= 3/10 + 1/3
= 19/30
c, 2/5 x 1/2 : 1/3
= 1/5 : 1/3
= 3/5
Bài 1.(2,5 điểm)Tìm x, biết:
a) \(\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right).x=-4\dfrac{1}{6}+3\dfrac{1}{2}\)
b) \(\left(1\dfrac{1}{3}+3\dfrac{1}{2}\right).x=4\dfrac{1}{6}-3\dfrac{1}{2}\)
c) \(\dfrac{1}{3}-\dfrac{7}{8}.x=\dfrac{1}{4}\)
d) \(\dfrac{3}{2}.x+\dfrac{1}{7}=\dfrac{7}{8}.\dfrac{64}{49}\)
e) \(5\dfrac{1}{2}-\left(\dfrac{1}{4}.x+\dfrac{2}{5}\right)=25\%\)
c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)
\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)
d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)
\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)
hay \(x=\dfrac{2}{3}\)
Chứng tỏ rằng:\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\)
Trình bày ra dùm mình nha!!Giúp em nha!!!\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\\ =\dfrac{200-2-\left(1+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{100}\right)}{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+...+\left(1-\dfrac{99}{100}\right)}\\ =\dfrac{198-\left(\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}...+\dfrac{2}{100}\right)}{\left(1+1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot99-2\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}\\ =\dfrac{2\cdot\left[99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\right]}{99-\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}=2\left(đpcm\right)\)
CMR: 100- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
Ta có:
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100-1-\dfrac{1}{2}-...-\dfrac{1}{100}=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\)
\(\Rightarrow100=1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+...+\dfrac{1}{100}+\dfrac{99}{100}\)
\(\Rightarrow100=1+1+1+...+1\) (\(100\) số \(1\))
\(\Rightarrow100=100\)
Vậy \(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{99}{100}\) (Đpcm)
bài 1
a,2-\(\dfrac{2}{3}\)+2,5+\(\dfrac{1}{3}\)+3+\(\dfrac{1}{2}\)
b,\(\dfrac{9}{10}\)-(\(\dfrac{6}{5}\).\(\dfrac{3}{2}\)+\(\dfrac{7}{4}\))
`#3107.101107`
1.
`a,`
`2 - 2/3 + 2,5 + 1/3 + 3 + 1/2`
`= (2 + 2,5 + 3) - (2/3 - 1/3 - 1/2)`
`= 7,5 - (-1/6)`
`= 7,5 + 1/6`
`= 23/3`
`b,`
`9/10 - (6/5 * 3/2 + 7/4)`
`= 9/10 - (18/10 + 7/4)`
`= 9/10 - 18/10 - 7/4`
`= -9/10 - 7/4`
`= -53/20`
Chứng tỏ răng :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2011^2}\)<\(\dfrac{3}{4}\)
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{1.3}\)
\(...\)
\(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}=\dfrac{99}{100}\\ \dfrac{99}{100}< \dfrac{1}{4}\\ \Rightarrowđpcm\)
Chứng minh rằng: \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)