Giải pt
\(\dfrac{x^2+2x}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
\(\dfrac{x^2+2x+2}{^{ }x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
giải pt
\(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)\(\Leftrightarrow\)\(\dfrac{x^2+2x+1+1}{x+1}+\dfrac{x^2+8x+16+4}{x+4}=\dfrac{x^2+4x+4+2}{x+2}+\dfrac{x^2+6x+9+3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow\) \(x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = x + 2 + x + 3 - x - 1 - x - 4
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) - \(\dfrac{2}{x+2}\) - \(\dfrac{3}{x+3}\) = 0
\(\Leftrightarrow\) \(\dfrac{1}{x+1}\) + \(\dfrac{4}{x+4}\) = \(\dfrac{2}{x+2}\) + \(\dfrac{3}{x+3}\)
\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+1\right)\left(x+4\right)}\) + \(\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x+4\right)}\) = \(\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}\) + \(\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x+4+4x+4}{x^2+5x+4}\) = \(\dfrac{2x+6+3x+6}{x^2+5x+6}\)
\(\Leftrightarrow\) \(\dfrac{5x+8}{x^2+5x+4}\) = \(\dfrac{5x+12}{x^2+5x+6}\)
Đặt 5x + 8 = y; x2 + 5x + 4 = t, ta có:
\(\dfrac{y}{t}\) = \(\dfrac{y+4}{t+2}\)
\(\Leftrightarrow\) \(\dfrac{y\left(t+2\right)}{t\left(t+2\right)}\) = \(\dfrac{t\left(y+4\right)}{t\left(t+2\right)}\)
\(\Leftrightarrow\) yt + 2y = yt + 4t
\(\Leftrightarrow\) 2y = 4t
\(\Leftrightarrow\) 2(5x + 8) = 4(x2 + 5x + 4)
\(\Leftrightarrow\) 10x + 16 = 4x2 + 20x + 16
\(\Leftrightarrow\) 16 - 16 = 4x2 + 20x - 10x
\(\Leftrightarrow\) 0 = 4x2 + 10x
\(\Leftrightarrow\) 2x(2x + 5) = 0
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
CHÚC BN HOK TỐT...
23) \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}=\dfrac{1}{9}\)
24) \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
25) \(\dfrac{x^2+2x+2}{x+1}+\dfrac{x^2+8x+20}{x+4}=\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+6x+12}{x+3}\)
24:
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)
\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)
=>(x+10)(x-2)=0
=>x=-10 hoặc x=2
25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)
\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)
\(\Leftrightarrow x+5=0\)
hay x=-5
a) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{3}-\left(x-1\right)\)
b) \(x^2-6x-2+\dfrac{14}{x^2-6x+7}=0\)
c) \(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
d) \(\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}=\dfrac{6}{x^2-9}\)
e) \(\left(1-\dfrac{2x-1}{x+1}\right)^3+6\left(1-\dfrac{2x-1}{x+1}\right)^2=\dfrac{12\left(2x-1\right)}{x+1}-20\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
Giải phương trình
\(1,\dfrac{x^2-2x-3}{x-1}+\dfrac{x^2-8x+20}{x-4}=\dfrac{x^2-4x+6}{x-2}+\dfrac{x^2-6x+12}{x-3}\)
\(2,\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot[1+\dfrac{1}{x\cdot\left(x+2\right)}]=\dfrac{31}{16}\left(x\in N\right)\)
pt nào cho thì mới biết chứ bạn
giải pt sau
g) 11+8x-3=5x-3+x
h)4-2x+15=9x+4-2x
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
h)\(\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
i)\(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
k) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{xx+7}{15}\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
p)\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
q)\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
giải pt sau
g) 11+8x-3=5x-3+x
\(\Leftrightarrow\) 8x + 8 = 6x - 3
<=> 8x-6x = -3 - 8
<=> 2x = -11
=> x=-\(\dfrac{11}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}
h)4-2x+15=9x+4-2x
<=> 19 - 2x = 7x + 4
<=> -2x - 7x = 4 - 19
<=> -9x = -15
=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)
Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)
<=> 9x + 6 - 3x + 1 = 10 + 12x
<=> 6x + 7 = 10 + 12x
<=> 6x -12x = 10-7
<=> -6x = 3
=> x= \(-\dfrac{1}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}
\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)
<=> x + 4 - 5x - 20 = 4x + 2 - 25
<=> x - 5x - 4x = 2-25-4+20
<=> -8x = -7
=> x= \(\dfrac{7}{8}\)
Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}
\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)
<=> 84x + 63 - 90x + 30 = 175x + 140 + 315
<=> 84x - 90x - 175x = 140 + 315 - 63 - 30
<=> -181x = 362
=> x = -2
Vậy tập nghiệm của PT là : S={-2}
K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)
<=> 25x + 10 - 80x - 10 = 24x + 12 - 150
<=> -55x = 24x - 138
<=> -55x - 24x = -138
=> -79x = -138
=> x=\(\dfrac{138}{79}\)
Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
<=> 6x - 3 - 5x + 10 = x+7
<=> x + 7 = x+7
<=> 0x = 0
=> PT vô nghiệm
Vậy S=\(\varnothing\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)
<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)
<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)
=> x= 1
Vậy S={1}
p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)
<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)
<=> 2x -2x + 1= x-36
<=> 2x-2x-x = -37
=> x = 37
Vậy S={37}
q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)
<=> 8 + 4x - 10x = 5 - 10x + 5
<=> 4x-10x + 10x = 5+5-8
<=> 4x = 2
=> x= \(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
g) \(11+8x-3=5x-3+x\)
\(\Leftrightarrow8+8x=6x-3\)
\(\Leftrightarrow8x-6x=-3-8\)
\(\Leftrightarrow2x=-11\)
\(\Leftrightarrow x=-\dfrac{11}{2}\)
h, \(4-2x+15=9x+4-2x\)
\(\Leftrightarrow-2x-9x+2x=4-4-15\)
\(\Leftrightarrow-9x=-15\)
\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)
g) 11+8x-3=5x-3+x
=> 8x -5x -x = -3 -11+3
<=> 2x = -11
<=> x = \(\dfrac{-11}{2}\)
h)4-2x+15=9x+4-2x
=> -2x -9x +2x = 4-4-15
<=> -9x = -15
<=> x = \(\dfrac{5}{3}\)
Giải các phương trình sau :
a)\(\dfrac{5x+2}{6}\)\(-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
b)\(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
c)\(2x^3 +6x^2=x^2+3x\)
d)\(\left|x-4\right|+3x=5\)
`a,` \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
`<=> (5(5x+2))/30 - (10(8x-1))/30 = (6(4x+2))/30 - (5.30)/30`
`<=> 5(5x+2) - 10(8x-1) =6(4x+2) - 5.30`
`<=> 25x + 10 - 80x + 10 = 24x+12 - 150`
`<=> -55x +20 = 24x-138`
`<=> -55x -24x=-138-20`
`<=>-79x=-158`
`<=> x=2`
Vậy pt có nghiệm `x=2`
`b,` \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne0\end{matrix}\right.\)
Ta có : `(x+2)/(x-2) -1/x = 2/(x(x-2))`
`<=> (x(x+2))/(x(x-2)) - (x-2)/(x(x-2)) = 2/(x(x-2))`
`=> x^2 +2x - x +2 = 2`
`<=> x^2 + x =0`
`<=>x(x+1)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-1\end{matrix}\right.\)
Vậy pt có nghiệm `x=-1`
`c,2x^3 + 6x^2 =x^2 +3x`
`<=> 2x^3 + 6x^2 -x^2 -3x=0`
`<=> 2x^3 + 5x^2 -3x=0`
`->` Đề có sai ko ạ ?
`d,` \(\left|x-4\right|+3x=5\) `(1)`
Thường hợp `1` : `x-4 >= 0<=> x >=0` thì phương trình `(1)` thở thành :
`x-4 = 5-3x`
`<=> x+3x=5+4`
`<=> 4x=9`
`<=> x= 9/4 (t//m)`
Trường hợp `2` : `x-4< 0<=> x<0` thì phương trình `(1)` trở thành :
`-(x-4) =5-3x`
`<=> -x +4=5-3x`
`<=> -x+3x=5-4`
`<=> 2x =1`
`<=>x=1/2 ( kt//m)`
Vậy phương trình có nghiệm `x=9/4`
đây là phương trình mà đâu phải bất phương trình đâu
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
Giải pt:
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)
\(\Leftrightarrow1+\dfrac{2}{x+2}+1+\dfrac{8}{x+8}=1+\dfrac{4}{x+4}+1+\dfrac{6}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+2}+\dfrac{4}{x+8}=\dfrac{2}{x+4}+\dfrac{3}{x+6}\)
\(\Leftrightarrow\dfrac{4}{x+8}-\dfrac{3}{x+6}=\dfrac{2}{x+4}-\dfrac{1}{x+2}\)
\(\Leftrightarrow\dfrac{4x+24-3\left(x+8\right)}{\left(x+8\right)\left(x+6\right)}=\dfrac{2x+4-\left(x+4\right)}{\left(x+4\right)\left(x+2\right)}\)
\(\dfrac{x}{\left(x+8\right)\left(x+6\right)}=\dfrac{x}{\left(x+4\right)\left(x+2\right)}\)
x=0 là nghiệm
x khác 0
\(\left\{{}\begin{matrix}x\ne\left\{-8;-6;-4;-2\right\}\\\left(x+4\right)\left(x+2\right)=\left(x+8\right)\left(x+6\right)\end{matrix}\right.\)<=>x^2 +6x+8 =x^2 +14x+48
-40 =8x=> x =-5 nhận
x={-5;0}