Những câu hỏi liên quan
MN
Xem chi tiết
NM
11 tháng 12 2021 lúc 21:37

\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\\ S=\left(1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)\\ S=n-1-\left(\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}\right)< n-1\)

Lại có \(\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{n^2}=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow S>n-1-1=n-2\\ \Rightarrow n-2< S< n-1\\ \Rightarrow S\notin N\)

Bình luận (0)
ND
Xem chi tiết
NL
Xem chi tiết
H24
1 tháng 3 2018 lúc 19:05

\(S_n=1-\dfrac{1}{n^2}\) xét tổng \(U_n=\dfrac{1}{n^2}\) với n >=2

cơ bản có \(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}=\dfrac{1}{n-1}-\dfrac{1}{n}\)

<=>\(U< 1-\dfrac{1}{n-1}\)

cơ bản có \(\dfrac{1}{n^2}>\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

<=>\(U>1-\dfrac{1}{n+1}\)

<=>\(1-\dfrac{1}{n-1}< U< 1-\dfrac{1}{n+1}\)

với n >2 => 1/(n-1) ; 1/(n+1) là hai phân số <1

=> U không phải là số nguyên

=> S không là số nguyên => dpcm

Bình luận (2)
H24
1 tháng 3 2018 lúc 17:57

vế phải đâu

Bình luận (1)
TT
Xem chi tiết
KR
11 tháng 7 2023 lúc 16:45

`@` `\text {Ans}`

`\downarrow`

`1,`

`3/16 - (x - 5/4) - (3/4 + (-7)/8 - 1) = 2 1/2`

`=> 3/16 - x + 5/4 - (-1/8 - 1) = 2 1/2`

`=> 3/16 - x + 5/4 - (-9/8) = 2 1/2`

`=> 3/16 - x + 19/8 = 2 1/2`

`=> 3/16 - x = 2 1/2 - 19/8`

`=> 3/16 - x =1/8`

`=> x = 3/16 - 1/8`

`=> x = 1/16`

Vậy, `x = 1/16`

`2,`

`1/2* (1/6 - 9/10) = 1/5 - x + (1/15 - (-1)/5)`

`=> 1/2 * (-11/15) = 1/5 - x + 4/15`

`=> -11/30 = x + 1/5 - 4/15`

`=> x + (-1/15) = -11/30`

`=> x = -11/30 + 1/15`

`=> x = -3/10`

Vậy, `x = -3/10.`

Bình luận (1)
LA
Xem chi tiết
NT
27 tháng 6 2023 lúc 20:11

1: B là số nguyên

=>n-3 thuộc {1;-1;5;-5}

=>n thuộc {4;2;8;-2}

3:

a: -72/90=-4/5
b: 25*11/22*35

\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)

c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)

Bình luận (0)
SZ
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 4 2021 lúc 23:46

Tìm y:

-y:1/2-5/2=4+1/2

-y:1/2 = 4+1/2+5/2

-y:1/2 = 7

-y = 7.2

y = -14

Vậy y = -14

Bình luận (0)
AB
Xem chi tiết
AH
29 tháng 12 2022 lúc 18:54

Lời giải:

$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$

\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)

Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy

\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)

\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$

Mặt khác:

\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)

\(M< 1+1-\frac{1}{n}< 2\)

Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.

Bình luận (1)
HD
Xem chi tiết
LA
1 tháng 5 2023 lúc 12:20

a) Ta có \(A=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

\(=\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\dfrac{4\cdot6}{5\cdot5}\cdot...\cdot\dfrac{49\cdot51}{50\cdot50}\)

\(=\dfrac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\cdot\dfrac{4\cdot5\cdot6\cdot...\cdot51}{3\cdot4\cdot5\cdot...\cdot50}\)

\(\dfrac{2}{50}\cdot17=\dfrac{17}{25}\)

b) Vì n nguyên nên 3n - 1 nguyên

Để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên thì 12 ⋮ ( 3n - 1 ) hay ( 3n - 1 ) ϵ Ư( 12 )

Ư( 12 ) = { \(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\) }

Lập bảng giá trị 

3n - 1 1 -1 2 -2 3 -3 4 -4 6 -6 12 -12
n \(\dfrac{2}{3}\) 0 1 \(\dfrac{-1}{3}\) \(\dfrac{3}{4}\) \(\dfrac{-2}{3}\) \(\dfrac{5}{3}\) -1 \(\dfrac{7}{3}\) \(\dfrac{-5}{3}\) \(\dfrac{13}{3}\) \(\dfrac{-11}{3}\)

Vì n nguyên nên n ϵ { 0; 1; -1 } 

Vậy n ϵ { 0; 1; -1 } để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên

Bình luận (0)