Cho pt:x2-2(m-1)x+m2-2m=0
a. Gpt với m=2
b. Tìm m để pt có 2 nghiệm x1,x2 thoả x1+x2
Cho pt x2-2 (m-1)x+m2-2m= 0
a .gpt với m=2
b .Tìm m để pt có 2 nghiệm x1,x2 thoả x1+x2=x1.x2
a: Khi m=2 thì pt sẽ là \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-2m\right)\)
\(=4m^2-8m+4-4m^2+8m=4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Theo đề, ta có: \(x_1+x_2=x_1\cdot x_2\)
\(\Leftrightarrow m^2-2m=2\left(m-1\right)=2m-2\)
\(\Leftrightarrow m^2-4m+2=0\)
\(\Leftrightarrow\left(m-2\right)^2=2\)
hay \(m\in\left\{\sqrt{2}+2;-\sqrt{2}+2\right\}\)
cho pt x^2 -2mx+2m-1 =0
1) giải pt với m=1
2) tìm m để pt có 2 nghiệm x1 x2 thoả mãn :a)x1+x2=-1
b)x1^2 +x2^2=13
1) Thay m=1 vào phương trình, ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1
1) Bạn tự làm
2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...
b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)
Vậy ...
2) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{1}=-2m\\x_1\cdot x_2=\dfrac{2m-1}{1}=2m-1\end{matrix}\right.\)
a) Ta có: \(x_1+x_2=-1\)
\(\Leftrightarrow-2m=-1\)
hay \(m=\dfrac{1}{2}\)
b) Ta có: \(x_1^2+x_2^2=13\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)
\(\Leftrightarrow\left(-2m\right)^2-2\cdot\left(2m-1\right)=13\)
\(\Leftrightarrow4m^2-4m+2-13=0\)
\(\Leftrightarrow4m^2-4m+1-12=0\)
\(\Leftrightarrow\left(2m-1\right)^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=2\sqrt{3}\\2m-1=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\sqrt{3}+1\\2m=-2\sqrt{3}+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2\sqrt{3}+1}{2}\\m=\dfrac{-2\sqrt{3}+1}{2}\end{matrix}\right.\)
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn:
x1(x1 -2x2) + x2(x2 -3x1) = 9
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
cho pt x^2-2(m+1)x+2m=0
a, GPT khi m=1
b, tìm m để pt có 2 nghiệm x1, x2 thoãn mãn hệ thức căn x1+căn x2=căn2
giúp hộ mk vs
Phần a dễ bạn tự làm nha!!! :))
b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
=> PT luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)
Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)
\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)
\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)
\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)
\(\Leftrightarrow2m+2\sqrt{2m}=0\)
\(\Leftrightarrow m+\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)
Vậy: m = 0
=.= hk tốt!!
a) Khi m=1 thì pt<=>x2-4x+2=0
Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)
b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1
Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)
b. Vì phương trình bậc 2 có 2 nghiệm x1 và x2 nên
\(x^2-2\left(m+1\right)x+2m=\left(x-x1\right)\left(x-x2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x1.x2=2m\\x1+x2=2\left(m+1\right)\\\sqrt{x1}+\sqrt{x2}=\sqrt{2}\end{cases}}\)(*)
Ta có: \(\left(\sqrt{x1}+\sqrt{x2}\right)^2=2\)
\(\Leftrightarrow x1+x2+2\sqrt{x1.x2}=2\)
\(\Rightarrow2m+2-2\sqrt{2m}=2\)(Theo (*))
\(\Leftrightarrow2m-2\sqrt{2m}=0\)
\(\Leftrightarrow\sqrt{2m}.\left(\sqrt{2m}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2m}=0\\\sqrt{2m}=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)
cho pt:x2-5x+2m-2=0 tìm m để pt có 2 nghiệm dương phân biệt x1 x2 thỏa mãn: \(\sqrt{\text{(x^2-4x_1+2m-2)}}+\sqrt{x_2}\)=3
Cho PT : x2 - (2m - 1)x + m2- 2 =0
- Tìm giá trị của m để PT có 2 nghiệm phân biệt x1,x2 thỏa / x1-x2/ =\(\sqrt{5}\)
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+9=5`
`<=>4m=4`
`<=>m=1(tm)`
Vậy `m=1=>|x_1-x_2|=\sqrt5`
Cho phương trình : x2 - 2m( m + 2 )x + m2 +7 = 0
tìm m để pt có 2 nghiệm thỏa mãn x1.x2 - 2(x1 + x2) = 4
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$
$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=2m(m+2)$
$x_1x_2=m^2+7$
Khi đó:
$x_1x_2-2(x_1+x_2)=4$
$\Leftrightarrow m^2+7-4m(m+2)=4$
$\Leftrightarrow -3m^2-8m+3=0$
$\Leftrightarrow (1-3m)(m+3)=0$
$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$
Thử lại với $(*)$ thấy đều không thỏa mãn
Vậy không tồn tại $m$ thỏa mãn đkđb
x2 - (2m-1)x + m2 - 1 = 0
Tìm m để PT có nghiệm thỏa (x1 - x2 )2 = x1 -3x2
Để pt có nghiệm \(\Leftrightarrow\Delta=-4m+5\ge0\) \(\Leftrightarrow m\le\dfrac{5}{4}\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow-4m+5=x_1-3x_2\) (1)
Kết hợp (1) và viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=6m-6\\x_1-3x_2=5-4m\\x_1x_2=m^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{3m-3}{2}\\x_1=5-4m+3x_2=\dfrac{m+1}{2}\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{3m-3}{2}\right)\left(\dfrac{m+1}{2}\right)=m^2-1\)
\(\Leftrightarrow1=m^2\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)
Vậy...