\(\dfrac{1}{ab}\ge\dfrac{4}{\left(a+b\right)^2}\)
Cho a, b, c thuộc R. CM:
1, \(ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
2, \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
3, \(a^4+b^4\ge a^3b+ab^3\)
4, \(a^4+3\ge4a\)
5, \(a^3+b^3+c^3\ge3abc\left(a,b,c>0\right)\)
6, \(a^4+b^4\le\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\left(a,b\ne0\right)\)
7, \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\left(a,b\ge1\right)\)
8, \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
Cho 3 số dương a,b,c
CMR : \(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(a+c\right)^2}\ge\dfrac{9}{4\left(ab+ac+bc\right)}\)
Đây là BĐT Iran 96 khá nổi tiếng. Bạn hoàn toàn có thể search trên google lời giải.
c/m bất đảng thức :
a)\(\dfrac{a}{3b}+\dfrac{b\left(a+b\right)}{a^2+ab+b^2}\)
b)\(\dfrac{a}{b^2}+\dfrac{b}{a^2}+\dfrac{16}{a+b}\ge5\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
c)\(\dfrac{a}{2b}+\dfrac{2b}{a+b}\)+\(\dfrac{ab^2}{2\left(a^3+2b^3\right)}\ge\dfrac{5}{3}\)
d)\(\dfrac{a}{4b^2}+\dfrac{2b}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+2b\right)}\)
e)\(\dfrac{2}{a^2+ab+b^2}+\dfrac{1}{3b^2}\ge\dfrac{9}{\left(a+2b\right)^2}\)
bn vô câu hỏi tương tự có hết nhé
cho a,b,c là số thực dương. Cmr:
1.\(\dfrac{a}{b^2+bc+c^2}+\dfrac{b}{c^2+ca+a^2}+\dfrac{c}{a^2+ab+b^2}\ge\dfrac{a+b+c}{ab+bc+ca}\)
2.\(\left(a+b+c\right)\left(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\right)\ge\dfrac{9}{4}\)
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức cosi chứng minh
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với a,b \(\ge\)0
\(\left(a+b\right).\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge\) 4 với a,b > 0
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\) 9 với a,b,c > 0
\(a^2+b^2+c^2\ge ab+bc+ca\)
cho a,b,c>0 chứng minh rằng
\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)
Dự đoán điểm rơi sẽ có 1 số bằng 0.
Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)
do đó \(ab+bc+ca\ge ab\) và \(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)
BDT cần chứng minh tương đương
\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)
\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)
BĐT trên hiển nhiên đúng theo AM-GM.
Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )
Chứng minh:a)\(x^2+5x-3\ge\dfrac{-37}{4}\)
b)\(a^2+b^2+c^2\ge ab+bc+ac\)
c)\(8\left(x+\dfrac{1}{2}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
b)a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac
⇔2(a2+b2+c2)≥2(ab+bc+ac)⇔2(a2+b2+c2)≥2(ab+bc+ac)
⇔2a2+2b2+2c2−2ab−2bc−2ac≥0⇔2a2+2b2+2c2−2ab−2bc−2ac≥0
⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0⇔(a2−2ab+b2)+(b2−2bc+c2)+(c2−2ac+a2)≥0
⇔(a−b)2+(b−c)2+(c−a)2≥0⇔(a−b)2+(b−c)2+(c−a)2≥0 (luôn đúng)
Dấu ''='' xảy ra khi a=b=c
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Cho a,b,c đôi một khác nhau.CMR:
\(\dfrac{bc}{\left(b-c\right)^2}+\dfrac{ca}{\left(c-a\right)^2}+\dfrac{ab}{\left(a-b\right)^2}\ge\dfrac{-1}{4}\)
CMR: \(\dfrac{1}{\left(1+a\right)^2}+\dfrac{1}{\left(1+b\right)^2}\ge\dfrac{1}{1+ab}\forall a,b\ge0\)
usechatgpt init success
=>(ab-1)^2+ab(a-b)^2>=0
=>a^2b^2-2ab+1+ab(a^2-2ab+b^2)>=0
=>a^2b^2-2ab+1+a^3b-2a^2b^2+ab^3>=0
=>a^3b+ab^3-a^2b^2-2ab+1>=0
=>ab(a^2+b^2)-2ab-a^2b^2+1>=0
=>ab(a^2+b^2-2-ab)+1>=0(luôn đúng)