Những câu hỏi liên quan
VT
Xem chi tiết
TC
20 tháng 11 2021 lúc 15:41

Xét \(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)

\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)

Xét \(x+y+z\ne0\) thì ta có:

\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)

\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)

Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)

Bình luận (0)
TC
20 tháng 11 2021 lúc 15:46

Nếu bị lỗi thì bạn có thể xem đây nhé:

undefined

Bình luận (1)
TB
Xem chi tiết
TL
Xem chi tiết
CH
Xem chi tiết
PH
4 tháng 3 2016 lúc 10:40

Áp dụng tích chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

=> x=y=z 

Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2

          1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2

    1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2

Vậy B= 2.2.2 = 8

Bình luận (0)
NH
Xem chi tiết
MT
Xem chi tiết
NT
31 tháng 8 2021 lúc 20:33

Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)

mà 2x+y-z=0

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)

Do đó: x=3; y=2; z=8

Bình luận (0)
PV
Xem chi tiết
ND
Xem chi tiết
DN
Xem chi tiết
HV
1 tháng 2 2021 lúc 0:10

Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)

\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Bình luận (0)
H24
1 tháng 2 2021 lúc 7:06

Áp dụng BĐT Svac-xơ cho 3 số dương có :

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)

Bình luận (0)
HS
Xem chi tiết
NT
27 tháng 1 2016 lúc 15:21

Cộng vế 2 đẳng thức đầu lại ta được 

(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27

Bình luận (0)