Những câu hỏi liên quan
H24
Xem chi tiết
ZZ
2 tháng 3 2020 lúc 13:12

Căn là để làm màu,khử căn bằng cách bình phương

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c};\sqrt{d};\sqrt{e}\right)\rightarrow\left(x;y;z;t;v\right)\)

Khi đó ta cần chứng minh:

\(x^2+y^2+z^2+t^2+v^2\ge x\left(y+z+t+v\right)\)

\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2+4v^2-4xy-4xz-4xt-4xv\ge0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4xz+4z^2\right)+\left(x^2-4xt+4t^2\right)+\left(x^2-4xv+4v^2\right)\ge0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2z\right)^2+\left(x-2t\right)^2+\left(x-2v\right)^2\ge0\)

Dấu "=" xảy ra tại x=2y=2z=2t=2v

Bình luận (0)
 Khách vãng lai đã xóa
OY
Xem chi tiết
OY
Xem chi tiết
TN
19 tháng 10 2016 lúc 13:03

\(Bdt\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge\left(a+c\right)^2+\left(b+d\right)^2\)

\(\Leftrightarrow ac+bd\le\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\left(1\right)\)

Nếu \(ac+bd< 0\). Bđt đúngNếu \(ac+bd\ge0\).Thì (1) tương đương:

\(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(\Leftrightarrow a^2d^2+b^2c^2-2abcd\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)

Vậy bài toán được chứng minh.

Bình luận (0)
TP
Xem chi tiết
ML
30 tháng 11 2015 lúc 22:52

Mincopxki

\(\sqrt{a^2+d^2}+\sqrt{b^2+e^2}+\sqrt{c^2+f^2}\ge\sqrt{\left(a+b\right)^2+\left(d+e\right)^2}+\sqrt{c^2+f^2}\ge\sqrt{\left(a+b+c\right)^2+\left(d+e+f\right)^2}\)

Bình luận (0)
TT
Xem chi tiết
PN
28 tháng 7 2020 lúc 19:53

làm xong ấn hủy :(( chán 

\(bđt\Leftrightarrow2a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae\ge0\)

\(\Leftrightarrow a^2-2a\left(d+e\right)+\left(d+e\right)^2+b^2-2bc+c^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+d^2-2de+e^2\ge0\)

\(\Leftrightarrow\left(a-d-e\right)^2+\left(b-c\right)^2+\left(a-b-c\right)^2+\left(d-e\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

Bình luận (0)
 Khách vãng lai đã xóa
TL
28 tháng 7 2020 lúc 20:05

cách khác câu a)

ta xét P=a2-a(b+c+d+e)+b2+c2+d2+e2 là một tam thức bậc 2 theo biến a ta có \(\Delta=\left(b+d+c+e\right)^2-4\left(b^2+d^2+c^2+e^2\right)\)

theo bđt cauchy-schwarz ta có \(\left(1+1+1+1\right)\left(b^2+c^2+d^2+e^2\right)\ge\left(b+d+c+e\right)^2\)

do đó \(\Delta\le0\), theo định lí về dấu của tam thức bậc hai ta được

a2-a(b+c+d+e) +b2+c2+d2+e2>=0

bài toán được chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
HF
28 tháng 7 2020 lúc 20:06

\(P=\frac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Đặt \(t=\sqrt{x-1}\)lúc đó \(A=\frac{\sqrt{x-1}}{x}=\frac{t}{t^2+1}\Leftrightarrow At^2-t+A=0\)

\(\Delta=1^2-4A^2\ge0\Rightarrow A\le\frac{1}{2}\)

Tương tự, ta có: \(\frac{\sqrt{y-2}}{y}\le\frac{\sqrt{2}}{4};\frac{\sqrt{z-3}}{z}\le\frac{\sqrt{3}}{6}\)

Dấu = xảy ra khi \(x=2;y=\sqrt{2};z=\sqrt{3}\)\(P_{min}=\frac{6+3\sqrt{2}+2\sqrt{3}}{12}\)

Bình luận (0)
 Khách vãng lai đã xóa
SA
Xem chi tiết
PQ
8 tháng 2 2020 lúc 20:13

a.

\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(luôn đúng)

b. Áp dụng BĐT \(x^2+y^2\ge2xy\)

\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

c. Tương tự câu b

Bình luận (0)
 Khách vãng lai đã xóa
PQ
8 tháng 2 2020 lúc 20:18

Áp dụng BĐT Cô si ta có

i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)

\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

k. Tương tự câu i

Bình luận (0)
 Khách vãng lai đã xóa
VV
Xem chi tiết
BT
5 tháng 8 2019 lúc 11:43
https://i.imgur.com/fqBU1Sm.jpg
Bình luận (0)
BT
5 tháng 8 2019 lúc 11:43
https://i.imgur.com/zL8xcmL.jpg
Bình luận (0)
PH
Xem chi tiết
PH
12 tháng 9 2017 lúc 21:39

ý a ko cần giải đâu nha mk ra òi

Bình luận (0)
TH
17 tháng 7 2019 lúc 22:24

Dễ thôi

Bình luận (0)
TH
17 tháng 7 2019 lúc 22:25

Dùng mẹo nhé bạn

Bình luận (0)
HH
Xem chi tiết
NT
2 tháng 8 2018 lúc 22:23

d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)

Bình luận (0)
NT
2 tháng 8 2018 lúc 22:33

a,ĐKXĐ: \(\forall x\in R\)

\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)

Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *

\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)

\(\Leftrightarrow-3\le a\le3\)

Vậy ...

Bình luận (0)