Những câu hỏi liên quan
H24
Xem chi tiết
NT
30 tháng 8 2021 lúc 14:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

Bình luận (1)
H24
30 tháng 8 2021 lúc 14:42

c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)

d) \(A=\dfrac{3}{\sqrt{x}+3}\)

Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)

e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)

Bình luận (1)
L1
Xem chi tiết
H24
20 tháng 2 2019 lúc 19:45

E = 5-x/x-2 nguyên khi

5 - x ⋮ x - 2

=> x - 2 + 7 ⋮ x - 2

=> 7 ⋮ x - 2

=> x - 2 thuộc Ư(7)

Bình luận (0)
L1
20 tháng 2 2019 lúc 19:48

Còn ý b bạn

Bình luận (0)
H24
21 tháng 2 2019 lúc 20:29

bn Đồng Hiên làm câu a, tớ làm câu b :)

\(E=\frac{5-x}{x-2}=\frac{-x+2+3}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)

Để E min => \(\frac{3}{x-2}_{min}\Rightarrow\left(x-2\right)_{max}\text{ và }x-2>0\)( vì 3>0 và ko đổi )

=>x-2=-1

=> x=1

Vậy...

Bình luận (0)
Xem chi tiết
TC
29 tháng 7 2021 lúc 18:00

undefined

Bình luận (1)
NT
30 tháng 7 2021 lúc 0:01

b) Để \(\dfrac{n+3}{n-1}\) là số nguyên thì \(n+3⋮n-1\)

\(\Leftrightarrow4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

Bình luận (0)
NQ
Xem chi tiết
KK
18 tháng 1 2016 lúc 11:17

bạn nhấn vào đúng 0 sẽ có đáp án

Bình luận (0)
NL
Xem chi tiết
LT
Xem chi tiết
LL
14 tháng 10 2021 lúc 8:39

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)

Bình luận (0)
NM
14 tháng 10 2021 lúc 8:46

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

Bình luận (0)
KM
Xem chi tiết
MP
20 tháng 10 2018 lúc 19:48

1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)

không thể cm được đâu bn --> xem lại đề

2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)

--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow x=1\) vậy \(x=1\)

3) +) tương tự 2)

4) a) +) điều kiện xác định : \(x>0;x\ne4\)

ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)

b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)

\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)

c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)

tương tự 2 )
\(\)

Bình luận (0)
MT
Xem chi tiết
VT
7 tháng 7 2016 lúc 10:56

                                Ta có : 

                     \(E=\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}\)\(-1\)

                    \(\Rightarrow x-2\inƯ\left(3\right)\)mà Ư(3) = {-3;-1;1;3} => \(x-2\in\left\{-3;-1;1;\right\}\)

                     \(\Rightarrow x\in\left\{-1;1;3;5\right\}\)

                           Ủng hộ mk nha!!!

Bình luận (0)
LH
7 tháng 7 2016 lúc 10:48

Để E nguyên thì 5 - x chia hết cho x - 2

Mà x -2 chia hết cho x -2

=> ( 5 - x ) + ( x - 2 )  chia hết cho x -2

=> 3  chia hết cho x -2

=> x -2 thuộc Ư(3) = { -3 ; -1 ; 1 ;3}

=> x thuộc { -1 ; 1 ; 3 ; 5}

Bình luận (0)
DH
7 tháng 7 2016 lúc 10:48

\(\frac{5-x}{x-2}=\frac{5-\left(x-2\right)-2}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)

<=> x - 2 thuoc U( 3 ) = { -1 ; - 3 ; 1 ; 3 }

=> x = 1 ; -1 ; 3 ; 5

Bình luận (0)
TA
Xem chi tiết
TO
14 tháng 8 2016 lúc 17:32

Để E nguyên thì x-1 / x+3 nguyên , tức là x-1 chia hết cho x+3 hay x+3-4 chia hết cho x+3 . Từ đó suy ra -4 chia hết cho x+3 hay x+3 là ước của -4 . Còn lại bạn tự làm nha...Thanks

Bình luận (0)