Những câu hỏi liên quan
NL
Xem chi tiết
NH
Xem chi tiết
LL
5 tháng 10 2018 lúc 12:49

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)

\(\Rightarrow a=2003k;b=2004k;c=2005k\)

Thay a = 2003k, b = 2004k, c = 2005k vào 4(a - b)(b - c), ta có:

4(2003k - 2004k)(2004k - 2005k)

= 4(-k)(-k)

= 4k2

Thay a = 2003k, b = 2004k, c = 2005k vào (c - a)2, ta có:

(2005k - 2003k)2 = (2k)2 = 4k2

Vì 4k2 = 4knên 4(a - b)(b - c) = (c - a)2

Vậy với \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)thì \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) 

Bình luận (0)
VV
Xem chi tiết
NT
2 tháng 6 2022 lúc 20:27

\(\dfrac{a+2003}{a-2003}=\dfrac{b-2004}{b+2004}\)

\(\Leftrightarrow\left(a+2003\right)\left(b+2004\right)=\left(a-2003\right)\left(b-2004\right)\)

\(\Leftrightarrow ab+2004a+2003a+2003\cdot2004=ab-2004a-2003a+2003\cdot2004\)

\(\Leftrightarrow4008a=4006b\)

=>a/b=2003/2004

hay a/2003=b/2004

Bình luận (0)
CA
Xem chi tiết
HN
27 tháng 5 2016 lúc 10:24

cm cái j

Bình luận (0)
PT
Xem chi tiết
H24
8 tháng 8 2017 lúc 23:14

Giải:

Đặt \(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)

Ta có:

\(4\left(a-b\right)\left(b-c\right)\)

\(=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right)\left(-k\right)\)

\(=4.k^2\) (1)

Lại có:

\(\left(c-a\right)^2\)

\(=\left(2005k-2003k\right)^2\)

\(=\left(2k\right)^2\)

\(=4k^2\) (2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(a+b\right)=\left(c-a\right)^2\)

\(\Rightarrowđpcm\).

Chúc bạn học tốt!!!

Bình luận (0)
MS
8 tháng 8 2017 lúc 23:39

Đặt:

\(\dfrac{a}{2003}=\dfrac{b}{2004}=\dfrac{c}{2005}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2003k\\b=2004k\\c=2005k\end{matrix}\right.\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.-k.-k=4k^2\)

\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

\(\rightarrowđpcm\)

Bình luận (1)
HA
8 tháng 8 2017 lúc 23:03

Bài này mk làm rồi bạn, vào câu hỏi tương tự nhé!

Bình luận (0)
H24
Xem chi tiết
LD
3 tháng 8 2020 lúc 21:45

Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

\(\Rightarrow\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2002k-2003k\right)\left(2003k-2004k\right)=4\left(-1k\right)\left(-1k\right)=4k^2\)

\(VP=\left(c-a\right)^2=\left(2004k-2002k\right)^2=\left(2k\right)^2=4k^2\)

\(\Rightarrow VT=VP\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
 

Bình luận (0)
 Khách vãng lai đã xóa
XO
3 tháng 8 2020 lúc 21:54

4) Ta có :\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}=\frac{a+b+c+1-1+2}{2+3+4}=\frac{a+b+c+2}{9}\)(1)

=> 2a + 5 = 9

=> 2a = 4

=> a = 2

Thay a vào (1) ta có : 

\(\frac{b-1}{3}=\frac{c+2}{4}=\frac{3}{2}\)

=> \(\hept{\begin{cases}\frac{b-1}{3}=\frac{3}{2}\\\frac{c+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2\left(b-1\right)=9\\2\left(c+2\right)=12\end{cases}}\Rightarrow\hept{\begin{cases}2b-2=9\\2c+4=12\end{cases}}\Rightarrow\hept{\begin{cases}2b=11\\2c=8\end{cases}\Rightarrow\hept{\begin{cases}b=5,5\\c=4\end{cases}}}\)

Vậy a = 2 ; b = 5,5 ; c = 4

5) Đặt \(\frac{a}{2002}=\frac{b}{2003}=\frac{c}{2004}=k\)

=> \(\hept{\begin{cases}a=2002k\\b=2003k\\c=2004k\end{cases}}\)

4(a - b)(b - c) = (c - a)2

=> 4(2002k - 2003k)(2003k - 2004k) = (2002k - 2004k)2

=> 4(-k)(-k) = (-2k)2

=> (-2)2(-k)2 = (-2k)2

=> 22k2 = (2k)2

=> (2k)2 = (2k)2

=> 4(a - b)(b - c) = (c - a)2 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HH
3 tháng 8 2020 lúc 22:00

Bài 4:

\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+b+c+2}{2a+5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a+1}{2}=\frac{b-1}{3}=\frac{c+2}{4}=\frac{a+1+b-1+c+2}{2+3+4}=\frac{a+b+c+2}{9}\)

\(\Rightarrow2a+5=9\Rightarrow a=2\)

Lại có: \(\frac{a+1}{2}=\frac{3}{2}\)\(\Rightarrow\frac{b-1}{3}=\frac{3}{2}\Leftrightarrow2\left(b-1\right)=9\Leftrightarrow b=\frac{11}{2}\)

\(\frac{c+2}{4}=\frac{3}{2}\Leftrightarrow2\left(c+2\right)=12\Leftrightarrow c=4\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
TT
23 tháng 8 2017 lúc 20:50

dat \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)

suy ra \(\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)

4.(a-b).(b-c)=4.(2003k-2004k).(2004k-2005k)=4k^2

(c-a)^2=(2005k-2003k)^2=4k^2

xong roi do cho minh dung nhe!

Bình luận (0)
NL
23 tháng 9 2017 lúc 13:49

 Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}\)

Thay vào \(4\left(a-b\right)\left(b-c\right)\), ta được :

\(4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( điều phải chứng minh ) 

Bình luận (0)
HT
24 tháng 9 2019 lúc 21:37

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}2003a​=2004b​=2005c​=2003−2004ab​=2004−2005bc​=2005−2003ca

\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}⇒−(ab)=−(bc)=2ca

Thay vào 4\left(a-b\right)\left(b-c\right)4(ab)(bc), ta được :

4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)4(ab)(bc)=4(−2ca​)(−2ca​)

\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]⇒4(ab)(bc)=4[4(ca)2​]

\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2⇒4(ab)(bc)=(ca)2( điều phải chứng minh ) 

Bình luận (0)
TH
Xem chi tiết
TD
Xem chi tiết
NT
5 tháng 1 2023 lúc 22:47

3B=1+1/3+...+1/3^2004

=>2B=1-1/3^2005

=>\(2B=\dfrac{3^{2005}-1}{3^{2005}}\)

=>\(B=\dfrac{3^{2005}-1}{3^{2005}\cdot2}< \dfrac{1}{2}\)

Bình luận (0)
NH

         B  =      \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+ \(\dfrac{1}{3^{2024}}\)\(\dfrac{1}{3^{2005}}\)

        3B  = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +........+\(\dfrac{1}{3^{2004}}\)

    3B -B  = 1 - \(\dfrac{1}{3^{2005}}\)

          2B  = 1 - \(\dfrac{1}{3^{2005}}\)

           B  = ( 1 - \(\dfrac{1}{3^{2005}}\)):2

            B  =  \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{2005}}\) < \(\dfrac{1}{2}\) (đpcm)

 

Bình luận (0)