Cho tam giác ABC ,M là trung điểm của BC
Chứng minh :\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
cho ▲ABC, điểm M là trung điểm BC. Chứng minh rằng:
\(\dfrac{AB+AC-BC}{2}\)<AM<\(\dfrac{AB+AC}{2}\)
Bạn tự kẻ hình nhá
Trên tia đối của tia MA lấy điểm D sao cho AM=MD
Xét △ACM và △ABM có
góc BMD=góc AMC
MC=BM
AM=MD
Nên △ACM=△ABM(c.g.c)
=>AC=BD
Xét △ABD có
AB+BD>AD( theo BĐT tam giác)
Mà AC=BD
=>AB+AC>AD
Mà AM=\(\dfrac{1}{2}AD\) hay AM=2.AD
=>AM<\(\dfrac{AB+AC}{2}\)(1)
Xét △ABM, ta có
AM>AB-BM (*)
Xét △ACM có
AM>AC-CM(**)
Từ (*) và (**), ta có
2.AM>AB+AC-BM+CM (mà BM+CM=BC)
=>2AM>AB+AC-BC
Hay AM>\(\dfrac{AB+AC-BC}{2}\)(2)
Từ (1) và (2)=>\(\dfrac{AB+AC-BC}{2}< AM< \dfrac{AB+AC}{2}\)(đpcm)
Cho tam giác ABC. Gọi M là trung điểm của BC
a) Chứng minh AM < \(\dfrac{AB+AC}{2}\)
b) Cho bốn điểm A, B, C, D như hình vẽ. gọi thứ tự là trung điểm của AC và BD. Chứng minh AB+BC+CD+DA > 4.MN
a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM
Cho tam giác ABC, D là một điểm trên AB và \(\dfrac{AD}{AC}\)=\(\dfrac{AC}{AB}\)= \(\dfrac{2}{3}\). M là trung điểm của CD. AM cắt BC tại E. Tìm \(\dfrac{CE}{BE}\)
cho tam giác ABC có AB<AC .Gọi M là trung điểm của cạnh BC
CMR :\(\dfrac{AC-AB}{2}\)< AM <\(\dfrac{AB+AC}{2}\)\
GỢI Ý :Lấy điểm D trên tia đối MA sao cho MD=MA
cho tam giác ABC có AB<AC .Gọi M là trung điểm của cạnh BC
CMR :\(\dfrac{AC-AB}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
GỢI Ý :Lấy điểm D trên tia đối MA sao cho MD=MA
GIÚP MIK VS MIK CẦN GẤP LẮM
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của CN
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
c: Xét tứ giác ABMK có
I là trung điểm của BK
I là trung điểm của AM
Do đó: ABMK là hình bình hành
Suy ra: AK//BM
hay AK//BC
mà AN//BC
và AN,AK có điểm chung là A
nên A,N,K thẳng hàng
Cho tam giác ABC vuông tại A AB lớn hơn AC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a Chứng minh AB = BC và AB song song bc B Chứng minh tam giác ABC bằng tam giác bda Từ đó suy ra AM = BC chia 2 trên tia đối của AC lấy điểm E sao cho ae = AC Chứng minh Be song song AM đề tìm điều kiện của tam giác ABC để AC = BC chia 2
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM
Tam giác ABC có AB=c AC=b Gọi M là trung điểm của BC. CMR AM < \(\dfrac{b+c}{2}\)