Giải và biện luận các phương trình sau:
ax+b/a=2bx+a/b
Giải và biện luận các phương trình sau:
ax+b/a=2bx+a/b
Giải và biện luận các phương trình sau
1. a(ax + b) = b2(x - 1)
2. ax2 - ab = b2(x - 1)
giải và biện luận phương trình sau với a, b là tham số
1/ \(b\left(ax-b+2\right)x=2\left(ax+1\right)\)
2/ \(a^2x=a\left(x+b\right)-b\)
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
Đề bài : giải và biện luận phương trình theo tham số m : m (x-4)=5x-2
- biến đổi về dạng ax+b =0
- xét các trường hợp a = 0 và a# 0để biện luận nghiệm
(giải hộ mk nha )
Giải và biện luận phương trình :
\(a\left(ax+b\right)=b^2\left(x-1\right)\)
Không chắc đúng hay không nha,tui mới lớp 7=(
\(x\left(a^2-b^2\right)+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)x+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)x+b\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\\ax-bx+b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\x=-\frac{b}{a-b}\end{cases}}\)
+Với a = -b,thì phương trình trở thành:
\(-b\left(-bx+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow0=0\) (luôn đúng)
Vậy nếu a = -b thì phương trình có vô số nghiệm.
Với ax - bx + b = 0 thì \(x=-\frac{b}{a-b}=\frac{b}{b-a}\)
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Giải và biện luận hệ phương trình
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\)
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\) (1)
Nếu a=0, b=0 thì (1) có dạng \(\begin{cases}0x+0=0\\0x+0=0\end{cases}\)
Hệ này có nghiệm là mọi \(x\in\)R
Nếu a=0, b\(\ne\)0 thì ax+b=0 vô nghiệm nên (1) cũng vô nghiệm
Nếu \(a\ne0\) thì ax+b=0 có nghiệm \(x=-\frac{b}{a}=x_1\)
Giá trị \(x_1\) này là nghiệm của (1) khi và chỉ khi nó thỏa mãn bx+a=0 hay là
\(b\left(-\frac{b}{a}\right)+a=0\) \(\Leftrightarrow\) \(b^2=a^2\) \(\Leftrightarrow\) \(\begin{cases}b=a\\b=-a\end{cases}\)
\(\Rightarrow\) \(\begin{cases}x_1=-1\\x=1_1\end{cases}\)
Ta có kết luận :
- Khi \(\begin{cases}a=0\\b\ne0\end{cases}\) hoặc \(\begin{cases}a\ne0\\b\ne\pm a\end{cases}\) thì hệ vô nghiệm
- Khi \(\begin{cases}a\ne0\\b=0\end{cases}\) thì hệ có nghiệm x=-1
- Khi \(\begin{cases}a\ne0\\b=a\end{cases}\) thì hệ có nghiệm x=1
- Khi \(\begin{cases}a=0\\b=0\end{cases}\) thì hệ có nghiệm là mọi x\(\in\)R
Giải và biện luận phương trình
a/ax-1 + b/bx-1 = a+b/(a+b)x-1