Cho các biểu thức sau :
(4-xy).\(x^2\) ; (5-2).x\(y^3\) ;\(\dfrac{1}{2}x+y.\left(-2xy^2\right)\) ;\(2x^3y^4\)
a,Hãy tìm các đơn thức trong các biểu thức trên ?Đơn thức nào chưa gọn hãy thu gọn chúng
b,Tim bậc của mỗi đơn thức vừa tìm được ở câu a
Trong các biểu thức sau, biểu thức nào là đơn thức ?
a) 2+xy ; 3xy2z ; 3 và 1/2 ; ( 1-3/2 ) x2 y2 ; 10x/3y
b) 4/3 x2yz ; 2018 ; xy2/3 ; 2 xy/z ; x+y
Đơn thức :
a) 3xy2z ; 3 và 1/2 ; 10x/3y
b) 4/3 x2yz ; 2018 ; xy2/3 ; 2 xy/z
a/Các đơn thức: 3xy2z ; \(3\dfrac{1}{2}\) ; \(\dfrac{10x}{3y}\)
b/Các đơn thức: \(\dfrac{4}{3}x^2yz\) ; \(2018\) ; \(\dfrac{xy^2}{3}\) ; \(\dfrac{2xy}{z}\)
#deathnote
Chỉ ra các đơn thức, đa thức trong các biểu thức sau:
\( - 3\); \(2z\); \(\dfrac{1}{3}xy + 1\); \( - 10{x^2}yz\); \(\dfrac{4}{{xy}}\); \(5x - \dfrac{z}{2}\); \(1 + \dfrac{1}{y}\)
Các đơn thức là:
\(-3;2z;-10x^2yz;\dfrac{4}{xy}\)
Các đa thức là:
\(\dfrac{1}{3}xy+1;5x-\dfrac{z}{2};1+\dfrac{1}{y}\)
BT22: Trong các biểu thức sau, biểu thức nào là đơn thức?
\(\dfrac{6}{x^2},\dfrac{x^2y}{2},-\dfrac{1}{x},\dfrac{x}{-5^2},-\dfrac{4}{5},-\dfrac{x^2y}{xy^2z}\)
tính giá trị các biểu thức sau: A=x^2+xy+y^2/2x^2y+2xy^2 với x+y=3/4 và xy=1/8
Bài1: viết các biểu thức sau dưới dạng tích
a)xy+2y-x^2+4
b)2x^2+y^2+3xy
Bài2: tính giá trị của biểu thức A=(x+y)^2 biết x-y=5 và xy=3
Giúp mình với!!!!
1.a) xy + 2y - x2 + 4
= y ( x + 2 ) - ( x2 - 4 ) = y ( x + 2 ) - ( x - 2 ) ( x + 2 ) = ( x + 2 )( y - x + 2 )
b) 2x2 + y2 + 3xy
= ( 2x2 + 2xy ) + ( y2 + xy )
= 2x ( x + y ) + y ( x + y )
= ( x + y ) ( 2x + y )
2.
x - y = 5 \(\Rightarrow\)( x - y )2 = 25 \(\Rightarrow\)x2 + y2 = 25 + 2xy = 25 + 2.3 = 31
A = ( x + y )2 = x2 + y2 + 2xy = 31 + 6 = 37
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
1.
Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)
\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)
\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)
\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)
\(\Rightarrow n\) lẻ thì A không tối giản
\(\Rightarrow n\) chẵn thì A tối giản
2.
Giả thiết tương đương:
\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)
Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)
Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)
\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)
\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)
\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)
cho x và y là các số dương thỏa mãn xy=1. tìm giá trị lớn nhất của biểu thức sau: \(P=\frac{x}{x^4+y^2}+\frac{y}{y^4+x^2}\)
Trong Các biểu thức sau, biểu thức nào là đơn thức:
-5xy^2, x/(3y), x, 5x+7y^2, -2/3, xy-2, 0
GIÚP MÌNH NHÉ)))))))
Đơn thức là \(-5xy^2;x;-\dfrac{2}{3};0\)
1 khai triển các biểu thức sau
a, ( x + y ) ^2
b, ( x - 2 y ) ^2
c, ( xy^2 + 1 ) ( xy^2 - 1 )
d, ( x+ y ) ^2 ( x - y )^2
2 viết các biểu thức dưới dạng bình phương của 1 tổng hoặc hiệu
a, x^2 + 4x + 4
b, 9x^2 - 12x +4
c, x^2/4 + x + 1
d, ( x + y )^2 - 4 ( x + y ) +4
giúp mik vs
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Bài 1 em dùng HĐT nha
Bài 2:
a. x2 + 4x + 4
= x2 + 2.2.x + 22
= (x + 2)2
b. 9x2 - 12x + 4
= (3x)2 - 3x.2.2 + 22
= (3x - 2)2
c. \(\dfrac{x^2}{4}+x+1\)
= \(\left(\dfrac{x}{2}\right)^2+2.\dfrac{x}{2}.1+1^2\)
= \(\left(\dfrac{x}{2}+1\right)^2\)
1. Phân tích đa tức thành nhân tử: (x-2)(x-4)(x-6)(x-9)+15
2. Tính giá trị biểu thức sau, biết x^3 -x=6. A=x^6 -2x^4 +x^3 +x^2 -x
3.Cho x, y là 2 số khác nhau thỏa manc: x^2 +y=y^2 +x. Tính giá trị biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)