So So sánh 2 biểu thức
A= y^2 (x+1) + x + 1 / y^2 + 1
B= y^2 (x-1) + 2xy - 2 / y^2 + 2
So sánh 2 biểu thức sau A=\(\dfrac{y^2\left(x+1\right)+\left(x+1\right)}{y^2+1}\) và B=\(\dfrac{y^2\left(x-1\right)+2x-x}{y^2+2}\)
Ta có :
A = \(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\) = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\) = x+1 (1)
B = \(\dfrac{y^2\left(x-1\right)+2x-x}{y^2+2}=\dfrac{\left(y^2+2\right)\left(x-1\right)}{y^2+2}=x-1\) (2)
Từ (1) và (2)
=> A > B
\(\dfrac{\text{y^2 ( x + 1 ) + ( x + 1 ) }}{y^2+1}\) = \(\dfrac{\left(y^2+1\right)\left(x+1\right)}{y^2+1}\)
so sánh hai biểu thức sau
A=\(\frac{y^2\left(x+1\right)+\left(x+1\right)}{y^2+1}\)
B=\(\frac{y^2\left(x-1\right)+2x-2}{y^2+2}\)
1.Chứng tỏ rằng vời mọi x;y € Q thì giá trị của biểu thức luôn luôn là số dương:
M= 3(x2 + 1) + x2.y2 + y2 - 2 / (x+y)2 + 5
2.So sánh hai biểu thức sau: A=[y2(x+1)+(x+1) ]/ (y2 + 1) và B= [y2(x-1) + 2x - 2]/(y2 + 2)
1.Với x-y =1 giá trị của biểu thức x^3 - y^3 -3xy = ?
2. x+y=3 va x^2 + y^2 =5 => x^3 +y^3 = ?
3. x-y =5 và x^2 + y^2 =15 => x^3 - y^3 = ?
4. x+y=2 va x^2 +y^2 =10 +> x^3+ y^3 =?
5. x +y=3 +.Q=x^2 + 2xy + y^2 -4x-4y +1 =?
6.Cho hình thang ABCD có góc A = góc D=90 độ. M trung điểm của BC
So sánh góc MAB và MDC
Bài 1: Khai triển biểu thức a) (x-1/2x²y)² b) (2xy²-1)(1+2xy²) c) (x-y+2)² d) (x+1/2)(1/2-x) e) (x² - 1/3)²
a) (x - 1/2x²y)²
= x² - 2x . 1/2 x²y + (1/2x²y)²
= x² - x³y + 1/4 x⁴y²
b) (2xy² - 1)(1 + 2xy²)
= (2xy²)² - 1²
= 4x²y⁴ - 1
c) (x - y + 2)²
= (x - y)² + 2(x - y).2 + 2²
= x² - 2xy + y² + 4x - 4y + 4
= x² + y² - 2xy + 4x - 4y + 4
d) (x + 1/2)(1/2 - x)
= (1/2)² - x²
= 1/4 - x²
e) (x² - 1/3)²
= (x²)² - 2x².1/3 + (1/3)²
= x⁴ - 2/3 x² + 1/9
so sánh biểu thúc M=(x-y)2(z+1)2-2(z+1)(x-y)2+(x-y)2 với số 0, với mọi x,y,z ta có biểu thức M.....0.
M=(x-y)2(z+1)2-2(z+1)(x-y)2+(x-y)2
M=[ (x-y)(z+1) - (x-y)]2
M=(z+1)2
ta có: (z+1)2\(\ge\)0
dấu "=" xảy ra khi z=-1
=> M\(\ge\)0 với mọi x;y;z . dầu "=" xảy ra khi và chỉ khi z=-1
Rút gọn biểu thức:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)
b) (2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
c) (x+y+z)^2-2(x+y+z)(x+y)+(x+y)
giúp mình vs!!!!
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
Trắc nghiệm chọn đáp án đúng
1) điều kiệm để biểu thức 2 phần x-1 là một phân thức
A)x#1 ;b) x=1; c) x#0 ; d) x=0
2) phân thức bằng với phân thức 1-x phần y-x là:
A) x-1 phần y-x ; b) 1-x phần x-y ; c) x-1 phần x-y ; d) y-x phần 1-x
3) kết quả rút gọn của phân thức 2xy(x-y)^2 phần x-y bằng:
a) 2xy^2 ;b) 2xy(x-y) ; c) 2(x-y)^2; d) (2xy)^2
4) hai phân thức 1 phần 4x^2 y và 5 phần 6xy^3 z có mẫu thức chung đơn giản nhất là:
a) 8x^2 y^3 z ; b) 12 x^3 y^3 z ; c) 24 x^2 y^3 z ; d) 12 x^2 y^3 z
5) phân thức đối của phân thức 3x phần x+y là:
A) 3x phần x-y ;b) x+y phần 3x ;c) -3x phần x+y ;d) -3x phần x-y
6) phân thức nghịch đảo của phân thức -3y^2 phần 2x là:
A) 3y^2 phần 2x ; b) -2x^2 phần 3y ; c) -2x phần 3y^2 ; d) 2x phần 3y^2