+Chứng minh:
\(n^3+6n^2+8n\text{ }⋮\text{ }48\text{ }\left(n\text{ }ch\text{ẵn}\right)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh \(n^3+6n^2+8n\text{ }⋮\text{ }48\text{ }\left(n\text{ }ch\text{ẵn}\right)\)
Biến đổi thành : \(n\left(n+2\right)\left(n+4\right)\) rồi thay n=2k vào ta được 8k(k+1)(k+2)
+Chứng minh:
\(n^4-10n^2+9\text{ }⋮\text{ }384\text{ }v\text{ới }n\text{ }l\text{ẻ }\left(n\in Z\right) \)
Vì n lẻ nên n=2k+1
\(n^4-10n^2+9\)
\(=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)
\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì k-1;k+1;k;k+2 là bốn số liên tiếp
nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)
\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)
chứng minh chia hết
4)(8n+1).(6n+5) không chia hết 2
5)n.(n+1).(n+3).(n+4) chia hết 24
6) ab+ba chia hết 11
+Chứng minh:
\(n^5-n\text{ }⋮\text{ }30\text{ }v\text{ới }n\in N\)
\(n^4-10n^2+9\text{ }⋮\text{ }384\text{ }v\text{ới }n\text{ }l\text{ẻ }\left(n\in Z\right)\)
\(10^n+18n-28\text{ }⋮\text{ }27\text{ }v\text{ới }n\in N\)
Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.
Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.
Do đó5n(n-1)(n+1) \(⋮30\)
Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.
Do đó n5-n chia hết cho 30
\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
=> \(A⋮16\)
Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24
=> A\(A⋮384\)
1.Tìm x,y ∈ Z
\(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
2.Tìm p nguyên tố để
\(2^p+3^p=x^2\)(x∈\(Z^+\))
3.CMR:
a) ∀n∈N thì \(A=n^3-n+7\) không chia hết cho 6
b) ∀n∈N; n lẻ thì \(B=n^3-n\text{⋮}24\)
c) \(C=n^4+6n^3+11n^2+6n\text{⋮}24\) (n∈\(N^{\cdot}\))
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24
Chứng minh : \(\dfrac{sin^2\text{α}}{cos\text{α}\left(1+tan\text{α}\right)}-\dfrac{cos^2\text{α}}{sin\text{α}\left(1+cot\text{α}\right)}-sin\text{α}-cos\text{α}\)
1) \(Ch\text{ứng}t\text{ỏ}2^{2n}\left(2^{2n+3}-1\right)-1chiah\text{ết}cho5anhch\text{ị}n\text{ào}jupvs\)
Dài lắm bn ak,bạn vào google đăng cái này rồi tìm ra kết quả của Online Math nó có cái bài giống thế này chỉ khác 1 tẹo thôi.
chứng minh rằng biểu thức không thuộc vào biến x:
\(A=\left(3\text{x}-5\right)\left(2\text{x}+11\right)-\left(2\text{x}+3\right)\left(3\text{x}+7\right)\)
cho ba số tự nhiên liên tiếp, tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi ba số đã cho là số nào?
chứng minh:
\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) luôn chia hết cho 6 với mọi n
\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=\left(6x^2-6x^2\right)+\left(33x-10x-14x-9x\right)-\left(55+21\right)\)
\(=-76\)
Vậy A không phụ thuộc vào biến x (đpcm)
Chứng minh các hệ thức:
a) \(\dfrac{cos\text{ α }}{1-sin\text{ α}}=\dfrac{1+sin\text{ α}}{cos\text{ α}}\)
b)\(\dfrac{\left(sin\text{ α }+cos\text{ α }\right)^2-\left(sin\text{ α }-cos\text{ α }\right)^2}{sin\text{ α }cos\text{ α }}=4\)
a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4