Những câu hỏi liên quan
PB
Xem chi tiết
CT
17 tháng 5 2017 lúc 12:22

Đặt m =  x 2  – 2x

Ta có:  x 2 - 2 x 2  – 2 x 2  + 4x – 3 = 0

⇔  x 2 - 2 x 2  – 2( x 2  – 2x) – 3 = 0

⇔  m 2 – 2m – 3 = 0

Phương trình  m 2  – 2m – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  m 1  = -1,  m 2  = 3

Với m = -1 ta có:  x 2 – 2x = -1 ⇔  x 2  – 2x + 1 = 0

Phương trình  x 2  – 2x + 1 = 0 có hệ số a = 1, b = -2, c = 1 nên có dạng a + b + c = 0

Suy ra:  x 1 = x 2  = 1

Với m = 3 ta có:  x 2 – 2x = 3 ⇔  x 2 – 2x – 3 = 0

Phương trình  x 2  – 2x – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0

Suy ra:  x 1  = -1,  x 2 = 3

Vậy phương trình đã cho có 3 nghiệm:  x 1  = 1,  x 2  = -1,  x 3  = 3

Bình luận (0)
TN
Xem chi tiết
NT
15 tháng 4 2022 lúc 9:24

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 12 2017 lúc 18:12

(x2 – 4x + 2)2 + x2 – 4x – 4 = 0

⇔ (x2 – 4x + 2)2 + x2 – 4x + 2 – 6 = 0 (1)

Đặt x2 – 4x + 2 = t,

Khi đó (1) trở thành: t2 + t – 6 = 0 (2)

Giải (2): Có a = 1; b = 1; c = -6

⇒ Δ = 12 – 4.1.(-6) = 25 > 0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2 ⇒ x2 – 4x + 2 = 2

⇔ x2 – 4x = 0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3 ⇒ x2 – 4x + 2 = -3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5 ⇒ Δ’ = (-2)2 – 1.5 = -1 < 0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 11 2019 lúc 7:45

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận (0)
DC
Xem chi tiết
NL
5 tháng 3 2022 lúc 0:26

\(\Leftrightarrow4\left|x-2\right|=\left(x-2\right)^2+4\)

Đặt \(\left|x-2\right|=t\ge0\)

\(\Rightarrow4t=t^2+4\Rightarrow t^2-4t+4=0\)

\(\Rightarrow\left(t-2\right)^2=0\Rightarrow t=2\)

\(\Rightarrow\left|x-2\right|=2\Rightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Bình luận (0)
BC
Xem chi tiết
NL
26 tháng 2 2023 lúc 10:20

Em kiểm tra lại câu a, chỗ \(x^2-x+z\) chữ \(z\) đó có vấn đề, nó phải là 1 con số ví dụ số 2 (chắc em nhìn nhầm số 2 thành chữ z)

Bình luận (1)
PB
Xem chi tiết
CT
5 tháng 6 2017 lúc 14:39

Đặt m= x 2  -3x +2

Ta có: ( x 2  -3x +4)( x 2  -3x +2) =3

⇔ [( x 2  -3x +2 +2)( x 2  -3x +2) -3 =0

⇔ x 2 - 3 x + 2 2  +2( x 2  -3x +2) -3 =0

⇔  m 2  +2m -3 =0

Phương trình  m 2  +2m -3 = 0 có hệ số a = 1, b = 2 , c = -3 nên có dạng

a +b+c=0

suy ra :  m 1  =1 , m 2  =-3

Với  m 1  =1 ta có:  x 2  -3x +2 =1 ⇔  x 2  -3x +1=0

∆ = - 3 2  -4.1.1 = 9 -4 =5 > 0

∆ = 5

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với  m 2  =-3 ta có:  x 2  -3x +2 =-3 ⇔  x 2  -3x +5=0

∆  = - 3 2  -4.1.5 = 9 -20 =-11 < 0.Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 10 2017 lúc 9:49

Đặt m =  x 2  +3x -1

Ta có:  x 2 + 3 x - 1 2  +2( x 2  +3x -1) -8 =0 ⇔  m 2  +2m -8 =0

∆ ’ = 1 2  -1.(-8) =1 +8 =9 > 0

∆ ' = 9  =3

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = 2 thì :  x 2 +3x - 1 = 2 ⇔  x 2  + 3x - 3 = 0

∆ ’ =  3 2  -4.1.(-3 )=9 +12=21 > 0

∆ ' = 21

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = -4 ta có:  x 2  +3x -1 = -4 ⇔  x 2  +3x +3 = 0

∆  =  3 2  -4.1.3=9 -12 = -3 < 0

Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 12 2019 lúc 8:54

Nếu đặt u = x 2 − 1 thì x 2  = u + 1 nên phương trình có dạng

( 2  + 2)u = 2(u + 1) −  2  (1)

Ta giải phương trình (1):

(1) ⇔  2 u + 2u = 2u + 2 −  2

⇔  2 u = 2 −  2

⇔  2 u =  2 ( 2  − 1) ⇔ u =  2  − 1

⇔ x 2  − 1 =  2  − 1

⇔ x 2  = 2

⇔ x = 1

Bình luận (0)