Những câu hỏi liên quan
MH
Xem chi tiết
CM
26 tháng 5 2019 lúc 10:57

\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\) 

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)}}\)

\(=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca=1\left(1\right)\) 

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

Tương tự:\(b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(2\right)\)

Từ (1) và (2) suy ra:

\(P\ge1+\frac{8abc}{8abc}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

:))

Bình luận (0)
CD
26 tháng 5 2019 lúc 11:04

ở phần cô si phần cuối là bn sai r

vì >= nhưng ở dưới mẫu nên bị đảo lại thành =< nên bn lm như thế k đúng

đay là link giải https://diendan.hocmai.vn/threads/bdt-a-2-b-2-c-2-dfrac-8abc-a-b-b-c-c-a-geq-2.341255/

Bình luận (0)
ET
27 tháng 5 2019 lúc 19:01

Em không chắc đâu nha....Em mới học BĐT nên còn khá ngu về phần này,xin được chỉ giáo thêm ạ! :D

Biển đổi P trở thành\(P=a^2+b^2+c^2+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) (như a/c Con Chim 7 Màu gì đó)

\(=\left(\frac{a^2+b^2+c^2}{ab+bc+ca}-1\right)+\left(\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)-1+2\)

\(=\frac{2\left(a^2+b^2+c^2-ab-bc-ca\right)}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(ab+bc+ca\right)}-\frac{a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+2\)

\(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\)

Để cho gọn,ta đặt \(P=S_c\left(a-b\right)^2+S_b\left(c-a\right)^2+S_a\left(b-c\right)^2+2\) 

Với \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\) (như trên)

\(S_a=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

\(S_b=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

Ta đi chứng minh: \(S_a;S_b;S_c\ge0\).Thật vậy,xét Sc:

Ta chứng minh \(S_c=\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\frac{1}{2}\ge\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2c\left(ab+bc+ca\right)\) (biến đổi làm cho 2 vế đồng bậc)

Chuyển vế qua ta cần chứng minh \(ab\left(a+b\right)+bc\left(b-c\right)+ca\left(a-c\right)\ge0\) (1)

Giả sử \(a\ge b\ge c\Rightarrow\)BĐT (1) đúng nên \(S_c\ge0\)

Do tính đối xứng của P nên ta cũng có \(S_b;S_c\ge0\)

Từ đây suy ra \(=\Sigma\left(\frac{1}{2\left(ab+bc+ca\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\left(a-b\right)^2+2\ge2\left(đpcm\right)\)

Bình luận (0)
PP
Xem chi tiết
NL
28 tháng 4 2021 lúc 21:37

Do \(abc=1\), nếu viết BĐT về dạng: 

\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)

Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.

Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.

Bình luận (1)
HN
Xem chi tiết
CC
20 tháng 4 2018 lúc 10:43

de sai

Bình luận (0)
H24
27 tháng 8 2018 lúc 16:35

Trả lời:

đề sai

chúc bạn học tốt

Bình luận (0)
TN
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
LM
10 tháng 12 2017 lúc 11:26

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Bình luận (0)
MD
Xem chi tiết
NL
23 tháng 1 2021 lúc 11:18

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
VD
Xem chi tiết
H24
Xem chi tiết
NL
13 tháng 1 2024 lúc 22:38

Trước hết theo BĐT Schur bậc 3 ta có:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc\ge2\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\) (do \(a+b+c=3\)) (1)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)^2}{a^2c^2+2ab^2c}\)

\(\Rightarrow P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

Áp dụng (1):

\(\Rightarrow P\ge\dfrac{\left[2\left(ab+bc+ca\right)\right]^2}{\left(ab+bc+ca\right)^2}=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)