CMR: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\)≥ 0
Cho a, b, c > 0 . CMR :
\(\dfrac{a^3}{\left(2a+b\right)\left(2b+c\right)}+\dfrac{b^3}{\left(2b+c\right)\left(2c+a\right)}+\dfrac{c^3}{\left(2c+a\right)\left(2a+b\right)}\le\dfrac{a+b+c}{9}\)
Dấu >= hay <= vậy bạn? Bạn xem lại đề.
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1) 0<a,b,c<1 và ab+bc+ca=1.find Min of:
\(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
2) a,b,c>0.CMR:
\(\frac{1}{\left(2a+b\right)^2}+\frac{1}{\left(2b+c\right)^2}+\frac{1}{\left(2c+a\right)^2}\ge\frac{1}{ab+bc+ca}\)
3)a,b,c>0 CMR:
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)
Bài 3)
BĐT cần chứng minh tương đương với:
\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)
Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).
BĐT được viết lại như sau:
\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)
Ta nhớ đến hai bổ đề khá quen thuộc sau:
Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)
Cách CM rất đơn giản, Cauchy - Schwarz:
\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)
Tương tự với biểu thức còn lại và cộng vào thu được đpcm
Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)
Cách CM: Quy đồng ta có đpcm.
Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)
\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:
\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)
\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)
\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)
\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)
\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )
Do đó \((\star)\) được cm. Bài toán hoàn tất.
Dấu bằng xảy ra khi \(a=b=c\)
P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.
Bài 1:
Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)
Ta sẽ chứng minh nó là giá trị nhỏ nhất
Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)
\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)
\(\geq2((a-b)^2+(c-a)(c-b))\)
\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)
Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\) và
\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)
BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)
P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"
Câu 1/ Ta có
\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)
\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)
Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)
\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)
Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)
Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)
\(\Rightarrow y'=-4x+1=0\)
\(\Rightarrow x=\frac{1}{4}=0,25\)
Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)
Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)
Cho a,b,c > 0 và a + b + c = 1/abc
CMR: \(\sqrt{\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2\left(1+a^2b^2\right)}}=a+b\)
Cho a,b,c là 3 số thực đôi một phân biệt. CMR:
\(3+\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}=\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}\)
Cho a,b,c > 0. CMR P = \(\frac{a^2}{b\left(b+2c\right)}+\frac{b^2}{c\left(c+2a\right)}+\frac{c^2}{a\left(a+2b\right)}\) ≥ 1
\(P=\frac{a^2}{b^2+2bc}+\frac{b^2}{c^2+2ac}+\frac{c^2}{a^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}\le\dfrac{3}{2}\)
Bài này có bạn giải rồi:
Cho các số thực dương a,b,c.Chứng minh rằng :\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{... - Hoc24
cmr với mọi số thực a, b, c dươngta đều có bđt
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{a^2}{\left(2c+a\right)\left(2c+b\right)}\)<=3
Bao nhiêu công gõ bài xong rồi đi chơi, chơi về định gửi bài, chơi về bật máy lên gửi thì lỗi, may vãi
Ta có:
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{2a\left(a+b+c\right)+2a^2+bc}\)
\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)
\(=\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)
Cần chứng minh \(\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)
\(\Leftrightarrow\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\ge1\)
Cauchy-Schwarz: \(VT=\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\)
\(=\dfrac{b^2c^2}{b^2c^2+2a^2bc}+\dfrac{c^2a^2}{c^2a^2+2ab^2c}+\dfrac{a^2b^2}{a^2b^2+2abc^2}\)
\(\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) * Đúng*
Happy New Year (Lunar)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Cách khác câu 2:Đặt \(\left(a,b,c\right)=\left(a^3,b^3,c^3\right)\)
Có: \(VT-VP=\frac{1}{6} \sum\, \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2}+\frac{2}{3} \sum \,{a}^{2}{b}^{2} \left( a -b \right) ^{2} \geq 0\)
Bất đẳng thức trên vẫn đúng trong trường hợp $a,b,c$ là các số thực.
Thật vậy ta chỉ cần chứng minh$:$
\(\frac{1}{6}\sum \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2} \geq 0\)
Chú ý \(\sum\left(a-b\right)\left(a+b-c\right)=0\)
Ta đưa về chứng minh: \(\sum (3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc) \geq 0 \,\,\,\,\,\,(1)\)
Và \(\sum \left( 3\,{a}^{2}+2\,ab+4\,ac+2\,bc+3\,{c}^{2} \right) \left( 3\,{a} ^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \geq 0 \,\,\,\,(2)\)
$(1)$ dễ chứng minh bằng tam thức bậc $2$.
Chứng minh $(2):$
$$\text{VT} = {\frac {196\, \left( a+b+c \right) ^{4}}{27}} + \sum{\frac { \left( a-b \right) ^{2} \left( 47\,a+26\,c+47\,b \right) ^{2}
}{2538}}+\sum {\frac {328\,{c}^{2} \left( a-b \right) ^{2}}{141}} \geq 0$$
Xong.
Vũ Minh Tuấn, @Nk>↑@, Nguyễn Văn Đạt, Băng Băng 2k6, tth, Nguyễn Thị Diễm Quỳnh, Lê Thị Thục Hiền,
Aki Tsuki, @Trần Thanh Phương, @Nguyễn Việt Lâm, @Akai Haruma
giúp e vs ạ! cần gấp! thanks nhiều!