Những câu hỏi liên quan
PP
Xem chi tiết
AH
29 tháng 3 2021 lúc 23:42

Lời giải:

Đặt $xy=t$

Áp dụng BĐT AM_GM:

$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$

Ta có:

$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$

$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$

$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$

$=x^4y^4+2x^2y^2-48xy+145$

$=t^4+2t^2-48t+145$

$=t(t^3+2t-48)+145$

Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$

$\Rightarrow P\leq 145$

Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.

Bình luận (0)
VC
Xem chi tiết
TM
2 tháng 10 2017 lúc 23:23

ta có \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{\left(\sqrt{12}\right)^2}{4}=3\)

Mà  \(\left(1+x^4\right)\left(1+y^4\right)=x^4+y^4+x^4y^4+1\)

\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+x^4y^4+1\)

\(=\left(12-2xy\right)^2+x^4y^4-2x^2y^2+1\)(vì \(x+y=2\sqrt{3}=\sqrt{12}\))

\(=144-48xy+4x^2y^2+x^4y^4-2x^2y^2+1\)

\(=x^4y^4+2x^2y^2-48xy+145\)

\(=xy\left(x^3y^3+2xy-48\right)+145\le100\)Vì \(xy\le3\)

vậy A max=100

Bình luận (0)
NT
2 tháng 10 2017 lúc 22:26

max hau min

Bình luận (0)
TM
2 tháng 10 2017 lúc 23:24

dấu bằng bạn tự tìm nhé

Bình luận (0)
PK
Xem chi tiết
KS
27 tháng 2 2018 lúc 21:00

sorry  mk mới lớp 8

Bình luận (0)
EC
Xem chi tiết
NM
8 tháng 8 2021 lúc 10:53

? cho a,b,c tìm x,y,z là seo?

Bình luận (1)
MY
8 tháng 8 2021 lúc 11:11

chắc đề cho x+y+z=1

\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)

\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3

Bình luận (1)
LB
Xem chi tiết
NQ
2 tháng 7 2017 lúc 21:29

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

Bình luận (0)
H24
2 tháng 7 2017 lúc 21:38


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

Bình luận (0)
LB
2 tháng 7 2017 lúc 21:40
sai rồi hehe
Bình luận (0)
DA
Xem chi tiết
TA
22 tháng 5 2017 lúc 10:25

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

Bình luận (0)
TA
20 tháng 5 2017 lúc 21:53

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Bình luận (0)
DA
22 tháng 5 2017 lúc 11:24

đang tìm Max mà bạn Thiên AN

Bình luận (0)
AV
Xem chi tiết
TA
22 tháng 5 2017 lúc 10:25

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

Bình luận (0)
TA
22 tháng 5 2017 lúc 10:37

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

Bình luận (0)
AV
22 tháng 5 2017 lúc 11:25

con 7 tìm Min bạn ơi

Bình luận (0)
MD
Xem chi tiết
TH
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Bình luận (0)
NL
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
TY
Xem chi tiết