Những câu hỏi liên quan
H24
Xem chi tiết
PH
1 tháng 2 2019 lúc 15:10

\(\Leftrightarrow x^4\left(x-1\right)-4x^3\left(x-1\right)+4x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^4-4x^3+4x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\left(x^2-4x+1\right)=0\)

- Khi x - 1 = 0 thì x = 1

- Khi x + 1 = 0 thì x = -1

- Khi \(x^2-4x+1=0\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{cases}}\)

Pt có tậo nghiệm là: \(S=\left\{1;-1;\sqrt{3}+2;-\sqrt{3}+2\right\}\)

Bình luận (0)
NL
Xem chi tiết
NT
31 tháng 1 2021 lúc 20:32

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

Bình luận (0)
HD
31 tháng 1 2021 lúc 21:07

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

Bình luận (0)
TC
Xem chi tiết
NL
25 tháng 8 2020 lúc 16:02

a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)

Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)

=> pt vô nghiệm

b) \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 8 2020 lúc 16:27

a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)

\(x^4-1+x^4-81=0\)

\(2x^4-82=0\)

\(2x^4=82\)

\(x^4=41\)

\(x=\sqrt[4]{41}\)

\(\Rightarrow\)vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
QK
Xem chi tiết
LN
16 tháng 4 2020 lúc 9:35

Hình như đề của bạn sai nên mình sửa lại nhé

x4 + 2x3 +5x2 +4x-12=0

⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0

⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0

⇔(x-1)(x3+3x2+8x+12)=0

⇔(x-1)(x+2)(x2+x+6)=0

ta có x2+x+6 >0 ∀x

\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy...

Bình luận (0)
NN
27 tháng 3 2020 lúc 10:05

Đề sai không bạn

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
BL
19 tháng 8 2017 lúc 22:46

c.

Tập xác định của phương trình

2

Lời giải bằng phương pháp phân tích thành nhân tử

3

Sử dụng phép biến đổi sau

4

Giải phương trình

5

Đơn giản biểu thức

6

Giải phương trình

7

Đơn giản biểu thức

8

Giải phương trình

9

Giải phương trình

10

Đơn giản biểu thức

11

Giải phương trình

12

Đơn giản biểu thức

13

Lời giải thu được

Bình luận (0)
BL
19 tháng 8 2017 lúc 22:48

a,

Tập xác định của phương trình

2

Lời giải bằng phương pháp phân tích thành nhân tử

3

Sử dụng phép biến đổi sau

4

Giải phương trình

5

Đơn giản biểu thức

6

Giải phương trình

7

Đơn giản biểu thức

8

Giải phương trình

9

Đơn giản biểu thức

10

Lời giải thu được

Bình luận (0)
H24
Xem chi tiết
NL
25 tháng 2 2019 lúc 12:43

giai phuong trinh
1, (x-2)(x-1)(x-8)(x-4)=4x^2
2, (x^2+5x+6)(x^2+20x+96)=4x^2
3, 3(x^2+2x-1)^2-2(x^2+3x-1)^2+5x^2=0

Bình luận (0)
NA
Xem chi tiết
HM
Xem chi tiết
TN
19 tháng 5 2016 lúc 18:30

x2(x+2)2+4x2=12(x+2)2

=>x2(x+2)2+4x2-12(x+2)2=0

VT=(x2-2x-4)(x2+6x+12)

pt trở thành (x2-2x-4)(x2+6x+12)=0

=>x2-2x-4=0 hoặc x2+6x+12=0

Th1:x2-2x-4=0

denta:(-2)2-(-4(1.4))=20

x1:(2+\(\sqrt{20}\)):2=1+\(\sqrt{5}\)

x2:(2-\(\sqrt{20}\)):2=\(\sqrt{5}\)+1

Th2:x2+6x+12=0

denta:62-4(1.12)=-12

=>\(\Delta< 0\)

=>vô nghiệm

vậy pt có nghiệm là 1-\(\sqrt{5}\)và \(\sqrt{5}\)+1

Bình luận (0)
NT
Xem chi tiết