Những câu hỏi liên quan
MH
Xem chi tiết
TM
Xem chi tiết
AH
28 tháng 10 2021 lúc 17:11

Đề thiếu. Bạn coi lại đề.

Bình luận (0)
MH
Xem chi tiết
TS
Xem chi tiết
TP
22 tháng 10 2017 lúc 6:50

Sơn ơi bài tương tự nè:https://olm.vn/hoi-dap/question/1015688.html

Bình luận (0)
TP
Xem chi tiết
HS
Xem chi tiết
H24
Xem chi tiết
YM
Xem chi tiết
NO
5 tháng 11 2018 lúc 21:23

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

Bình luận (1)
NT
17 tháng 11 2022 lúc 20:15

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=k^2\)

\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=k^2\)

Do đó: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

c: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)

d: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{b^{2018}k^{2018}-b^{2018}}{b^{2018}k^{2018}+b^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)

\(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)

Do đó: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)

Bình luận (0)
HS
Xem chi tiết