Những câu hỏi liên quan
NN
Xem chi tiết
BB
Xem chi tiết
AH
28 tháng 2 2021 lúc 22:32

Bạn tham khảo lời giải tại đây:

CHO ĐA thức f(x)=\(ax^3 bx^2 cx d\). Chứng minh rằng nếu f(X) nhận giá tri nguyên vs mọi giá trị nguyên của x thì d,2b,6... - Hoc24

Bình luận (0)
MD
Xem chi tiết
NH
Xem chi tiết
TQ
Xem chi tiết
PK
Xem chi tiết
VH
Xem chi tiết
TM
3 tháng 5 2017 lúc 21:57

\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên

=>(a+b+c+d)+(-a+b-c+d)=2b+2d  mà d nguyên => 2d nguyên 

=>(2b+2d)-2d=2b nguyên

Bình luận (0)
US
Xem chi tiết
H24
Xem chi tiết
NT
15 tháng 8 2017 lúc 22:13

+ Với x=0 ta có f(x) = d ( \(f\left(0\right)\in Z\Rightarrow d\in Z\) )

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d\)

+ Với x= 1 ta có \(f\left(1\right)=a+b+c+d\)

\(\Rightarrow f\left(-1\right)+f\left(1\right)=2b+2d\)

\(\Rightarrow2b=f\left(-1\right)+f\left(1\right)-2d\)

\(\Rightarrow2b\in Z\left(1\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d\)

\(\Rightarrow f\left(2\right)-2f\left(1\right)=6a-2b+d\)

\(\Rightarrow6a=f\left(2\right)-2f\left(1\right)+2b-d\)

\(\Rightarrow6a\in Z\left(2\right)\)

Từ (1) và (2) \(\Rightarrow6a,2b\in Z\left(đpcm\right)\)

Bình luận (1)