Ôn tập toán 7

H24

Cho f(x) = ax3+bx2+cx +d có giá trị nguyên với mọi x thuộc Z.

Chứng minh rằng: 6a, 2b thuộc Z.

NT
15 tháng 8 2017 lúc 22:13

+ Với x=0 ta có f(x) = d ( \(f\left(0\right)\in Z\Rightarrow d\in Z\) )

+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d\)

+ Với x= 1 ta có \(f\left(1\right)=a+b+c+d\)

\(\Rightarrow f\left(-1\right)+f\left(1\right)=2b+2d\)

\(\Rightarrow2b=f\left(-1\right)+f\left(1\right)-2d\)

\(\Rightarrow2b\in Z\left(1\right)\)

+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d\)

\(\Rightarrow f\left(2\right)-2f\left(1\right)=6a-2b+d\)

\(\Rightarrow6a=f\left(2\right)-2f\left(1\right)+2b-d\)

\(\Rightarrow6a\in Z\left(2\right)\)

Từ (1) và (2) \(\Rightarrow6a,2b\in Z\left(đpcm\right)\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
HA
Xem chi tiết
HA
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
TA
Xem chi tiết
ND
Xem chi tiết