Những câu hỏi liên quan
TT
Xem chi tiết
NC
Xem chi tiết
TV
21 tháng 11 2018 lúc 21:18

Sử dụng Cô-si ngược dấu có thêm hằng số

Bình luận (0)
TV
21 tháng 11 2018 lúc 21:22

Kq là 1 nhé

Bình luận (0)
NC
21 tháng 11 2018 lúc 22:06

viết cách làm giúp mk vs

Bình luận (0)
ND
Xem chi tiết
TT
Xem chi tiết
NA
25 tháng 12 2017 lúc 19:42

Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban

Bình luận (0)
TT
26 tháng 12 2017 lúc 17:16

uk  thanks bn

Bình luận (0)
LA
Xem chi tiết
AH
29 tháng 4 2019 lúc 16:39

Lời giải:

Đặt \(\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)\). Bài toán đã cho trở thành:

Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)

Tính max của \(Q=\frac{\sqrt{bc}}{\sqrt{a^2+1}}+\frac{\sqrt{ac}}{\sqrt{b^2+1}}+\frac{\sqrt{ab}}{\sqrt{c^2+1}}\)

-------------------------

Vì $ab+bc+ac=1$ nên:

\(Q=\sqrt{\frac{bc}{a^2+ab+bc+ac}}+\sqrt{\frac{ac}{b^2+ab+bc+ac}}+\sqrt{\frac{ab}{c^2+ab+bc+ac}}\)

\(=\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+c)(b+a)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\)

Áp dụng BĐT Cauchy:

\(Q\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{b+c}\right)\)

\(Q\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy \(Q_{\max}=\frac{3}{2}\)

Bình luận (0)
NT
29 tháng 4 2019 lúc 17:36

\(x,y,z>0:\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\left(1\right)\)

\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\left(a,b,c>0\right)\)

\(Q=\sqrt{\frac{\frac{1}{yz}}{1+\frac{1}{x^2}}}+\sqrt{\frac{\frac{1}{xz}}{1+\frac{1}{y^2}}}+\sqrt{\frac{\frac{1}{xy}}{1+\frac{1}{z^2}}}\\ =\sqrt{\frac{bc}{1+a^2}}+\sqrt{\frac{ac}{1+b^2}}+\sqrt{\frac{ab}{1+c^2}}\)

\(\left(1\right)\Leftrightarrow ab+bc+ca=1\\ \Rightarrow a^2+1=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\\ \Rightarrow\sqrt{\frac{bc}{1+a^2}}=\sqrt{\frac{b}{a+b}}.\sqrt{\frac{c}{a+c}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Tương tự: \(\sqrt{\frac{ca}{1+b^2}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\sqrt{\frac{ab}{1+c^2}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\\ \Rightarrow Q\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

(Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\Leftrightarrow x=y=z=\sqrt{3}\))

Bình luận (0)
MT
Xem chi tiết
VL
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Bình luận (0)
MT
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Bình luận (0)
TN
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx 

Bình luận (0)
PT
Xem chi tiết
NQ
1 tháng 3 2018 lúc 22:24

Cmr gì bạn 

Ghi đủ đề rùi nhắn tin cho mk biết là đã sửa rùi mk làm cho 

Bình luận (0)
PT
1 tháng 3 2018 lúc 22:26

x,y,z>0

Bình luận (0)
PT
1 tháng 3 2018 lúc 22:27

bdt trên <=3/2

Bình luận (0)
LN
Xem chi tiết
LN
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Bình luận (0)
NL
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)