3(x2)-5(x+1)=23
Tập nghiệm của các bất phương trình x2 + 2(x – 3) – 1 > x(x + 5) + 5 và 2 3 − 3 x − 6 2 > 1 + 3 x 6 lần lượt là
A. S1 = {x|x > -4}; S2 = {x|x > 7/4}
B. S1 = {x|x > -4}; S2 = {x|x < 7/4}
C. S1 = {x|x < -4}; S2 = {x|x < 7/4}
D. S1 = {x|x < -4}; S2 = {x|x > 7/4}
+) x2 + 2(x – 3) – 1 > x(x + 5) + 5
ó x2 + 2x – 6 – 1 > x2 + 5x + 5
ó x2 + 2x – x2 – 5x > 5 + 6 + 1
ó -3x > 12
ó x < -4
Vậy tập nghiệm của bất phương trình trên là S1 = {x|x < -4}
+) 2 3 − 3 x − 6 2 > 1 + 3 x 6
ó 2.2 – 3(3x – 6) > 1 + 3x
ó 4 – 9x + 18 > 1 + 3x
ó 4 – 9x + 18 > 1 + 3x
ó 12x < 21 ó x < 7/4
Vậy tập nghiệm của bất phương trình trên là S2 = {x|x < 7/4}
Đáp án cần chọn là: C
Tim X
3) -12 + (2x – 9) + x= 0
4) 11 + (15 - x) = 1
5) 4 - (27 - 3) = x - (13 - 4)
6) 8 - (x - 10) = 23 - (- 4 +12)
7) 105 – 5(10 – 5x) = -20
8) (x -1)(8-2x)(3x+123) = 0
9) (x2 - 25)(x+ 10) = 0
10) x(x2+5) =
3) \(-12+2x-9+x=0\\ -21+3x=0\\ 3x=21\\ x=7\)
4)
\(11+\left(15-x\right)=1\)
\(15-x=1-11\)
\(15-x=-10\)
\(x=15-\left(-10\right)\)
\(x=25\)
5)
\(4-\left(27-3\right)=x-\left(13-4\right)\)
\(4-24=x-9\)
\(x-9=-20\)
\(x=-20+9\)
\(x=-11\)
\(3.-12+\left(2x-9\right)+x=0.\)
\(\Leftrightarrow-12+2x-9+x=0.\Leftrightarrow3x=21.\Leftrightarrow x=7.\)
Vậy \(x=7.\)
\(4.11+\left(15-x\right)=1.\Leftrightarrow11+15-x=1.\Leftrightarrow26-x=1.\Leftrightarrow x=25.\)
Vậy \(x=25.\)
\(5.4-\left(27-3\right)=x-\left(13-4\right).\Leftrightarrow4-24=x-9.\Leftrightarrow-20=x-9.\Leftrightarrow x=-11.\)
Vậy \(x=-11.\)
\(6.8-\left(x-10\right)=23-\left(-4+12\right).\Leftrightarrow8-x+10=23-8.\Leftrightarrow18-x=15.\Leftrightarrow x=3.\)
Vậy \(x=3.\)
\(7.105-5\left(10-5x\right)=-20.\Leftrightarrow105-50+25x=-20.\Leftrightarrow25x=-75.\Leftrightarrow x=-3.\)
Vậy \(x=-3.\)
\(8.\left(x-1\right)\left(8-2x\right)\left(3x+123\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\8-2x=0.\\3x+123=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=4.\\x=-41.\end{matrix}\right.\)
Vậy \(x\in\left\{1;4;-41\right\}.\)
\(9.\left(x^2-25\right)\left(x+10\right)=0.\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+10\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0.\\x+5=0.\\x+10=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5.\\x=-5.\\x=-10.\end{matrix}\right.\)
Vậy \(x\in\left\{5;-5;-10\right\}.\)
\(10.x\left(x^2+5\right)=0.\Leftrightarrow x=0.\)
a: =>x+7/4=6:2/3=9
=>x=29/4
b: =>x:5/3=7/5
=>x=7/5*5/3=7/3
c:=>x+1/6=5/3
=>x=10/6-1/6=3/2
d: =>x+4/5=4/5+3/7+3/5
=>x=3/7+3/5=36/35
e: =>x/35=4/5-5/7=3/35
=>x=3
f: =>13/28+x=1/2
=>x=1/28
g: =>1/3-x=1/9
=>x=2/9
Phân tích đa thức thành nhân tử
1) 2x3–x2+5x+3
2) 27x3−27x2+18x–427x3−27x2+18x–4
3) x2+2xy+y2−x−y–12x2+2xy+y2−x−y–12
4) (x+2)(x+3)(x+4)(x+5)–24(x+2)(x+3)(x+4)(x+5)–24
5) 4x4−32x2+14x4−32x2+1
6) 3(x4+x2+1)−(x2+x+1)23(x4+x2+1)−(x2+x+1)2
7) 64x4+y4
a) 5(x-2)(x+3)=1
b) 7(x-2024)2 = 23- y2
c) |x2+ 2x| + |y2- 9|= 0
d) 2x+ 2x+1+2x+2+2x+3=120
e) ( x- 7 )x+1- (x - 7)x+11=0
f) 25 - y2= 8(x 2012)2
a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)
=>\(\left(x-2\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)
mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)
nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
=>\(2^x\left(1+2+2^2+2^3\right)=120\)
=>\(2^x\cdot15=120\)
=>\(2^x=8\)
=>x=3
e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)
=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)
=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
1)(3x2+2x+4)2=(x2-4)2
2) (2x2-3x-4)2=(x2-x)2
3) \(\dfrac{2}{x+1}-\dfrac{3}{x+2}=\dfrac{1}{3x+3}\)
4) \(\dfrac{x}{x-3}=\dfrac{1}{x+2}\)
5) \(\dfrac{4}{x-2}+\dfrac{x}{x+1}=\dfrac{x^2-2}{x^2-x-2}\)
gúp em tl câu hỏi trên vs ạ em đag cần gấp em c.ơn trước
\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)
\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)
\(\Rightarrow x^2+3x-x+3=0\)
\(\Rightarrow x^2+2x+3=0\)
\(\Rightarrow S=\varnothing\)
Giải các phương trình sau:
a) 2 5 x + 1 4 = 2 5 ;
b) 5 x + 7 4 − 2 − 3 x 7 = 2 x + 9 2 + 4 ;
c) 11 x + 2 3 = x 2 + 1 ;
d) x − x + 2 3 − 3 4 x − 1 = − x + 9 6 − 5 .
Bài 1:
a. Tính:
1+22+23+....+29+210
b. Tìm x biết:
a] 60 - 3 . [x-1] = 23. 3
b] [3x - 2]3 = 2 . 25
c] 5x+1 - 5x = 500
d] x2 = x4
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Bài 1: Tìm x [GIÚPPPPPPPPPPPPPPPPPPP]
1) 5 – (10 – x) = 7
2) - 32 - (x – 5) = 0
3) -12 + (2x – 9) + x= 0
4) 11 + (15 - x) = 1
5) 4 - (27 - 3) = x - (13 - 4)
6) 8 - (x - 10) = 23 - (- 4 +12)
7) 105 – 5(10 – 5x) = -20
8) (x -1)(8-2x)(3x+123) = 0
9) (x2 - 25)(x+ 10) = 0
10) x(x2+5) = 0
\(1\)) \(5-\left(10-x\right)=7\)
\(10-x=5-7\)
\(10-x=-2\)
\(x=10-\left(-2\right)\)
\(x=12\)
\(2\)) \(-32-\left(x-5\right)=0\)
\(x-5=-32-0\)
\(x-5=-32\)
\(x=-32+5\)
\(x=-27\)
1)10-x=5-7
x=10-(-2)
x=12
2)x+5=0+32
x=32-5
x=27
3) -12+2x-9+x=0
-12+(2x+x-9)=0
3x-9=0+12
3x=12+9
x=21:3
x=7
4) 15-x=1-11
x=15-(-10)
x=25
5) 4-(27+3)=x-9
4-30=x-9
-26+9=x
x=-17