cho tứ giác ABCD có góc ngoài tại đỉnh C bằng góc ACB. CMR AB+CD>AD+AB
Bài 4. Cho tứ giác ABCD, có góc ngoài của tứ giác tại đỉnh C bằng góc ACB. Chứng minh rằng AB + DB >
AC + CD.
cho tứ giác ABCD, có góc ngoài của tứ giác tại đỉnh C bàng ACB. cmr AB+BD>AC+DC
1. Cho tứ giác ABCD có góc ngoài của tứ giác tại đỉnh C bằng góc ACB. Chứng minh rằng AB + DB > AC + DC
2. Cho tam giác ABC có góc A = 20o, góc B = 80o. Trên cạnh AC lấy điểm M sao cho AM = BC. Tính góc BMC
1.
trên tia đối tia CD lấy điểm H sao cho AC=CH.Nối BH
=> TAM GIÁC ABC=HBC(c.g.c)
=> AB=BH => AB+BD=HB+BD
AC=CH => AC+CD=HC+CD
Tam giác DBH có BD+BH>DH ( bất đẳng thức tam giác)
=> đpcm
2.
góc C = 80 độ
tam giác BMC cóCB=CM nên cân tại C
=>góc BMC=góc CBM=(180 - 80)/2=50
Ai kết bạn với mink mink k cho hứa luôn
Cho tứ giác ABCD có AB=AD,góc B=90 độ,góc D=135 độ,góc ngoài tại đỉnh A=120 độ
a) Chứng minh BD=BC
b)Kẻ AE vuông góc Cd tại E. Tính góc DAE
Cho hình thang ABCD (AB //CD). Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. CMR: MN song song AB
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD
cho hình thang ABCD có góc A bằng góc B bằng 90 độ
AB=BC=1/2 AD
c/m AC vuông góc với CD
phân giác góc ngoài tại đỉnh C và D cắt nhau tại O . c/m OC vuông góc với OD
Cho hình thang ABCD (AB song song CD) có AB=a,BC=b,CD=c,DA=d. Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N
a, CMR: MN song song AB
b,Tính độ dài MN theo ABCD
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
Giúp mik nha tối nay học rồi!
Bài 1 :Cho tứ giác ABCD có góc A+góc C=180 độ, AB<AC,AC là phân giác góc BAD.E thuộc cạnh Ad sao cho AE=AB.CMR: BC=CE=CD
Bài 2: Cho tứ giác ABCD có DB là phân giác góc ADC
a,Giả sử AB song song CD. CMR: AB=AD
b,Giả sử AB=AD.CMR: AB song song CD
Bài 3:Cho hình thnag ABCD có AB song song CD.AB=AD+BC.CMR: Phân giác góc C và D cắt nhau tại 1 điểm E nằm trên đoạn AB