TB

Cho hình thang ABCD (AB //CD). Các đường phân giác của các góc ngoài đỉnh A và D cắt nhau tại M, Các đường phân giác của các góc ngoài đỉnh B và C cắt nhau tại N. CMR: MN song song AB

NT
16 tháng 10 2022 lúc 13:32

góc AMD=180 độ-góc MAD-góc MDA

\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)

\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)

Gọi giao của AM với DC là M'

Xét ΔDM'A có

DM là đường cao, là đường phân giác

nên ΔDM'A cân tại D

=>M là trung điểm của AM'

Gọi giao của BN với DC là N'

Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)

\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)

\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)

=90 độ

Xét ΔCN'B có

CN vừa là đường cao, vừa là phân giác

nên ΔCN'B cân tại C

=>N là trug điểm của BN'

Xét hình thang ABN'M' có

M,N lần lượt là trung điểm của AM' và BN'

nen MN là đường trung bình

=>MN//CD

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
OM
Xem chi tiết
TT
Xem chi tiết
VL
Xem chi tiết
PB
Xem chi tiết