Những câu hỏi liên quan
MN
Xem chi tiết
NL
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Bình luận (2)
NL
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Bình luận (0)
NH
Xem chi tiết
DH
Xem chi tiết
NL
16 tháng 9 2021 lúc 10:03

Từ bài toán này (mà bạn đã hỏi cách đây vài bữa):

cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\) - Hoc24

Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)

Do đó: \(VT\ge\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)

Lại có: \(\dfrac{a+b+c}{\sqrt[3]{abc}}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3\)

Đặt \(\dfrac{a+b+c}{\sqrt[3]{abc}}=x\ge3\Rightarrow VT\ge x+\dfrac{1}{x}=\dfrac{x}{9}+\dfrac{1}{x}+\dfrac{8x}{9}\ge2\sqrt{\dfrac{x}{9x}}+\dfrac{8}{9}.3=\dfrac{10}{3}\) (đpcm)

Bình luận (0)
DH
Xem chi tiết
NL
14 tháng 9 2021 lúc 19:20

Ta có:

\(\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}\ge3\sqrt[3]{\dfrac{a^2}{bc}}=\dfrac{3a}{\sqrt[3]{abc}}\)

\(\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3b}{\sqrt[3]{abc}}\)

\(\dfrac{c}{a}+\dfrac{c}{a}+\dfrac{a}{b}\ge\dfrac{3c}{\sqrt[3]{abc}}\)

Cộng vế:

\(3\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)

\(\Rightarrow\) đpcm

Bình luận (0)
QT
Xem chi tiết
H24
25 tháng 5 2023 lúc 10:32

Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:

\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)

\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)

+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:

\(x^4+x^4+y^4+z^4\ge4x^2yz\)

\(y^4+y^4+x^4+z^4\ge4xy^2z\)

\(z^4+z^4+x^4+y^4\ge4xyz^2\)

Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

+ Chứng minh BĐT (2). Ta có:

\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)

Bây giờ ta quay lại chứng minh BĐT ở đề.

BĐT cần chứng minh tương đương với BĐT sau:

\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)

Sử dụng BĐT (1) ta có:

\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Sử dụng BĐT (2) và BĐT AM - GM ta có:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)

\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)

Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.

Bình luận (0)
CK
Xem chi tiết
NL
28 tháng 3 2023 lúc 16:52

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)

Bình luận (0)
MH
Xem chi tiết
H24
25 tháng 11 2017 lúc 19:44

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có: \(\sqrt{a+bc}=\sqrt{\dfrac{a^2+abc}{a}}=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\)

thiết lập tương tự ,bất đẳng thức cần chứng minh tương đương:

\(\Leftrightarrow\sum\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(\Leftrightarrow\sum\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Leftrightarrow\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\sum a\sqrt{bc}\)

Điều này luôn đúng theo BĐT Bunyakovsky:

\(\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\sum\left(bc+a\sqrt{bc}\right)=abc+\sum a\sqrt{bc}\)

Dấu = xảy ra khi a=b=c=3

Bình luận (0)
NT
Xem chi tiết
HC
Xem chi tiết
HM
25 tháng 12 2019 lúc 12:50

:)

We have:

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\Sigma_{cyc}\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}\ge\frac{\left[2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\right]^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Now we let's verify

\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\)

Consider

\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)

Sign '=' happening when \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa