Những câu hỏi liên quan
HM
Xem chi tiết
HM
Xem chi tiết
TA
Xem chi tiết
XO
6 tháng 9 2023 lúc 22:43

Với m = 1 

(d1) có dạng y = x + 3

(d2) có dạng y = -x + 3

Phương trình hoành độ giao điểm 

-x + 3 = x + 3

<=> x = 0

Với x = 0 <=> y = 3

Tọa độ giao điểm A(0;3) 

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 9 2023 lúc 21:35

1: Khi m=1 thì (d1): y=x+3 và (d2): y=-x+3

a: loading...

b: Tọa độ giao điểm là:

x+3=-x+3 và y=x+3

=>x=0 và y=3

Bình luận (0)
2S
Xem chi tiết
NT
17 tháng 11 2023 lúc 20:18

a: Thay x=1 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)

Vậy: \(A\left(1;-\dfrac{5}{2}\right)\) thuộc đồ thị hàm số y=-5/2x

b: Thay x=2 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot2=-5\)

=>B(2;-5) thuộc đồ thị hàm số y=-5/2x

Thay x=3 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot3=-\dfrac{15}{2}\)<>7

=>\(C\left(3;7\right)\) không thuộc đồ thị hàm số y=-5/2x

Thay x=1 vào y=-5/2x, ta được:

\(y=-\dfrac{5}{2}\cdot1=-\dfrac{5}{2}\)<>5/2

=>\(D\left(1;\dfrac{5}{2}\right)\) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

Thay x=0 vào \(y=-\dfrac{5}{2}x\), ta được:

\(y=-\dfrac{5}{2}\cdot0=0\)<>4

=>E(0;4) không thuộc đồ thị hàm số \(y=-\dfrac{5}{2}x\)

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 1 2024 lúc 21:22

 

a: Bảng giá trị:

x123
\(y=3^x\)3927

Vẽ đồ thị:

loading...

b: Bảng giá trị:

x234
\(y=\left(\dfrac{1}{2}\right)^x\)1/41/81/16

 

vẽ đồ thị:

loading...

Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 9:38

Ôn tập chương II

Bình luận (0)
SK
Xem chi tiết
MT
7 tháng 4 2017 lúc 12:41

a) Hình a:


b)Hình b:
Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 8:51

Hàm số bậc nhất y=ax+b

Điểm \(\left(1;1\right)\) thuộc đồ thị, điểm \(\left(1;\dfrac{3}{2}\right)\) không thuộc đồ thị .

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 1 2024 lúc 9:07

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

Bình luận (0)