giải pt
\(\dfrac{1}{x^2-2x+2}+\dfrac{2}{x^2-2x+3}=\dfrac{6}{x^2-2x+4}\)
GIẢI CÁC PT SAU:
\(\dfrac{2x+1}{3x+2}=5\)
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
\(\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}=\dfrac{24}{x^2-9}+2\)
giải pt sau
a)\(\dfrac{60}{x}=\dfrac{4}{3}+\dfrac{60-x}{x+4}\)
b)\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{6}\)
c)\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
Helppppp
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
GIẢI PHƯƠNG TRÌNH VÀ GHI RÕ ĐIỀU KIỆN CỦA CÁC CÂU.
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10
giải pt bậc nhất một ẩn
\(\dfrac{2x+1}{6}\)-\(\dfrac{x-2}{4}\)=\(\dfrac{3-2x}{3}\)-x
Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8+20x-12=0\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Bài 1:
a) Giải PT sau: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
b) Giải PT sau: |2x+6|-x=3
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
Giải pt:
\(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
ĐKXD: ∀x
Ta có \(\dfrac{x^{2^{ }}+2x+1}{x^2+2x+2}\) + \(\dfrac{x^2+2x+2}{x^2+2x+3}\) = \(\dfrac{7}{6}\)
Đặt x2 + 2x + 2 là a (a ∈ Q) Ta có phương trình mới ẩn a:
\(\dfrac{a-1}{a}+\dfrac{a}{a+1}\) = \(\dfrac{7}{6}\)
⇔ \(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}\)+\(\dfrac{6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7}{6}\)
⇔\(\dfrac{6\left(a^2-1\right)+6a^2}{6a\left(a+1\right)}\) = \(\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)
Suy ra: 6a2 - 6 + 6a2 = 7a2 + 7a
⇔ 12a2 - 6 - 7a2 - 7a
⇔ 5a2 - 7a - 6 = 0
⇔5a2 - 10a + 3a - 6 = 0
⇔5a( a - 2 ) + 3( a - 2 ) = 0
⇔ (5a + 3)(a - 2) = 0
⇔\(\left[{}\begin{matrix}a-2=0\\5a+3=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}a=2\\a=-0,6\end{matrix}\right.\)
Với a = 2 thì:
x2 + 2x + 2 = 2 ⇔ x2 + 2x = 0
⇔ x(x + 2) = 0 ⇔ \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với a = -0,6 thì:
x2 + 2x + 2 = -0,6 ⇔ x2 + 2x + 1 = -1,6
⇔ (x + 1)2 = -1,6 (Vô lí vì (x + 1)2 ≥ 0)
Vậy S ∈ \(\left\{0;-2\right\}\)
GIẢI PT:
a) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
b) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
e) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
MN GIẢI BÀI NÀY GIÚP E VỚI Ạ. E ĐANG CẦN GẤP Ạ.
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\) (GHI RÕ ĐK)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\) (GHI RÕ ĐK)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\) (GHI RÕ ĐK)
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10