Những câu hỏi liên quan
NC
Xem chi tiết
MN
Xem chi tiết
NT
8 tháng 2 2022 lúc 10:14

I: Để 3n+4/n+2 là số nguyên thì \(3n+4⋮n+2\)

\(\Leftrightarrow3n+6-2⋮n+2\)

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{-1;-3;0;-4\right\}\)

II: \(D=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)\)

\(D=2\cdot\left(1-\dfrac{1}{2009}\right)=2\cdot\dfrac{2008}{2009}=\dfrac{4016}{2009}\)

Bình luận (0)
NV
Xem chi tiết
NL
5 tháng 3 2023 lúc 11:15

\(2H=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{49.51}\)

\(2H=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{51-49}{49.51}\)

\(2H=\dfrac{3}{1.3}-\dfrac{1}{1.3}+\dfrac{5}{3.5}-\dfrac{3}{3.5}+...+\dfrac{51}{49.51}-\dfrac{49}{49.51}\)

\(2H=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2H=1-\dfrac{1}{51}\)

\(2H=\dfrac{50}{51}\)

\(H=\dfrac{25}{51}\)

Bình luận (0)
PP
Xem chi tiết
LL
23 tháng 8 2021 lúc 19:10

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt  \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 21:39

a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(=\dfrac{2003}{2004}\)

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:37

b: Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2003\cdot2005}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2003\cdot2005}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2004}{2005}=\dfrac{1002}{2005}\)

Bình luận (0)
TY
Xem chi tiết
MS
3 tháng 3 2018 lúc 0:46

\(S=\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)

\(S=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}\right)-\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}\right)\)

\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{10}\right)\)

\(S=\dfrac{1}{2}-\dfrac{1}{18}-\dfrac{1}{4}+\dfrac{1}{20}\)

\(S=.C.A.S.I.O.\)

Bình luận (0)
HS
Xem chi tiết
ND
27 tháng 2 2018 lúc 10:39

\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\) \(\Rightarrow2S=1-\dfrac{1}{2n+1}\)

\(\Rightarrow S=\dfrac{n}{2n+1}\)

Bình luận (0)
DW
27 tháng 2 2018 lúc 10:56

Ta có : \(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

ta được \(\dfrac{1}{1.3}=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}\right);\dfrac{1}{3.5}=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}\right);\dfrac{1}{5.7}=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}\left(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\) vậy \(S=\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)=\dfrac{n}{2n+1}\)

Bình luận (0)
BH
Xem chi tiết
ND
8 tháng 2 2023 lúc 20:46

Ta có :

\(\dfrac{1}{1.3}\text{=}2\left(\dfrac{1}{1}-\dfrac{1}{3}\right)\)

\(\dfrac{1}{3.5}\text{=}2\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)

\(\dfrac{1}{5.7}\text{=}2\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\)

\(...\)

\(\dfrac{1}{2021.2023}\text{=}2\left(\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(\Rightarrow\) biểu thức chỉ còn :

\(2.1-\dfrac{2}{2023}\text{=}\dfrac{4044}{2023}\)

Bình luận (0)
NL
8 tháng 2 2023 lúc 20:34

đặt biểu thức trên là A

ta có

2A=2/1.3+2/3.5+...+2/2021.2023

2A=1/1-1/3+1/3-1/5+...+1/2021-1/2023

2A=1/1-1/2023

2A=2022/2023

A=(2022/2023):2

A=1011/2023

Bình luận (0)
BC
21 tháng 5 2024 lúc 20:48

Thực hiện phép tính ( tính hợp lý nếu có thể)

\(1-\dfrac{2}{1.3}-\dfrac{2}{3.5}-..\dots-\dfrac{2}{2021.2023}\)

 
Bình luận (0)
H24
Xem chi tiết
NK
19 tháng 3 2023 lúc 15:05

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

\(B=\dfrac{1}{1}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{5}+\dfrac{1}{5}\cdot\dfrac{1}{7}+...+\dfrac{1}{97}\cdot\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(B=\dfrac{1}{1}-\dfrac{1}{99}\)

\(B=\dfrac{99}{99}-\dfrac{1}{99}\)

\(B=\dfrac{98}{99}\)

#YVA

Bình luận (0)
H1
22 tháng 3 2023 lúc 11:57

B=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)

B=\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{97}-\dfrac{1}{99}\right):2\)

B=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right):2\)

B=\(\dfrac{98}{99}:2\)

B=\(\dfrac{49}{99}\)

Bình luận (0)
NA
Xem chi tiết
NV
19 tháng 5 2022 lúc 21:12

chữ xấu (thông cảm) ;-;

undefined

Bình luận (0)
H24
19 tháng 5 2022 lúc 21:12

\(A=1.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{5}+...+\dfrac{1}{2021}.\dfrac{1}{2023}=1-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

Bình luận (0)
NT
19 tháng 5 2022 lúc 21:12

\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)

Bình luận (0)