Những câu hỏi liên quan
H24
Xem chi tiết
NT
25 tháng 4 2023 lúc 11:09

loading...  

Bình luận (0)
HH
Xem chi tiết
H24
Xem chi tiết
NT
23 tháng 1 2022 lúc 22:18

1: BC=10cm

Xét ΔABC có BD là đường phân giác

nên AD/AB=DC/BC

=>AD/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3(cm); BD=5(cm)

2: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Xét ΔABI và ΔCBD có

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{IAB}=\widehat{DCB}\)

Do đó: ΔABI\(\sim\)ΔCBD

Bình luận (0)
HT
Xem chi tiết
NT
29 tháng 10 2023 lúc 20:49

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)

2: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot EB=HE^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)

3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)

Bình luận (0)
TV
Xem chi tiết
NT
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

Bình luận (0)
HK
Xem chi tiết
NT
13 tháng 2 2022 lúc 20:54

BC=BH+CH=25(cm)

\(AC=\sqrt{CH\cdot BC}=20\left(cm\right)\)

Bình luận (0)
NT
13 tháng 2 2022 lúc 20:55

ta có:

\(AC^2=CH.BC\)

\(\Leftrightarrow AC=\sqrt{16.\left(16+9\right)}=\sqrt{400}=20cm\)

Bình luận (0)
H24
13 tháng 2 2022 lúc 20:57

undefined

Chúc em học tốt

Bình luận (2)
LV
Xem chi tiết
NT
27 tháng 6 2023 lúc 23:47

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Bình luận (0)
BH
Xem chi tiết
NT
16 tháng 3 2021 lúc 21:48

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=2\cdot8=16\)

hay AH=4(cm)

Vậy: AH=4cm

Bình luận (1)
GN
Xem chi tiết
TH
10 tháng 3 2021 lúc 10:49

a) Xét \(\Delta ABC\) và \(\Delta HBA\) có \(\widehat{BAC}=\widehat{BHA}=90^o;\widehat{B}-\text{góc chung}\)

\(\Rightarrow \Delta ABC\sim\Delta HBA(g.g)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{BA}\Rightarrow AB^2=BH.BC\)

 

Bình luận (0)
TH
10 tháng 3 2021 lúc 10:49

b) Tương tự câu a

c) Ta có \(AB.AC=2S_{ABC}=AH.BC\)

Bình luận (0)
TH
10 tháng 3 2021 lúc 10:50

d) Một cách cm lớp 7:

Theo định lý Pytago ta có \(AH^2+BH^2+AH^2+CH^2=AB^2+AC^2=BC^2=\left(BH+CH\right)^2\Leftrightarrow2AH^2=2BH.CH\Leftrightarrow AH^2=BH.CH\).

Bình luận (0)
H24
Xem chi tiết