Những câu hỏi liên quan
SL
Xem chi tiết
H24
Xem chi tiết
CH
4 tháng 4 2018 lúc 9:28

Ta có: \(\left(AC+BH\right)^2=AC^2+BH^2+2AC.BH\)

\(\left(AB+CK\right)^2=AB^2+CK^2+2AB.CK\)

Ta dễ thấy do AB < AC nên BH < CK

Vậy thì \(\left(AC+BH\right)^2-\left(AB+CK\right)^2=AC^2-CK^2-\left(AB^2-BH^2\right)\)

\(=AK^2-AH^2>0\)

\(\Rightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)

\(\Rightarrow AC+BH>AB+CK\)

\(\Rightarrow AC-AB>CK-BH\)

Bình luận (0)
NA
Xem chi tiết
NA
Xem chi tiết
VT
Xem chi tiết
DL
Xem chi tiết
TV
Xem chi tiết
NT
2 tháng 1 2023 lúc 14:38

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

Bình luận (0)
AB
Xem chi tiết
NT
9 tháng 2 2021 lúc 17:47

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

⇔BH=CH(hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-4^2=9\)

hay BH=3(cm)

Vậy: BH=3cm

c) Ta có: ΔABH=ΔACH(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{DAH}=\widehat{EAH}\)

Xét ΔDAH vuông tại D và ΔEAH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)(cmt)

Do đó: ΔDAH=ΔEAH(cạnh huyền-góc nhọn)

Suy ra: AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Bình luận (0)
TD
Xem chi tiết
PC
Xem chi tiết
PC
5 tháng 12 2017 lúc 20:09

AI GIÚP MÌNH VỚI MAI MÌNH PHẢI NỘP RỒI

Bình luận (0)