(√x - √y ) ( x+y √xy )
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tiếp thu và sửa đổi. Cảm ơn ạ 🙆♀️
\(a) (x+y)+(y-x)\)
\(= x+y+y-x\)
\(=(x-x)+(y+y)\)
\(= 2y\)
\(b) (x+y)-(y-x)\)
\(= x+y-y+x\)
\(= (x+x)+(y-y)\)
\(= 2x\)
\(c) (x-y)+(y-x)\)
\(= x-y+y-x\)
\(= (x-x)+(y-y) \)
\(=0\)
\(e) (x^2+xy-1)+(3x^2+xy+1)\)
\(= x^2+xy-1+3x^2+xy+1\)
\(= (x^2+3x^2)+(xy+xy)+(1-1)\)
\(= 4x^2 + 2xy\)
\(g) (x^2+xy-1)-(3x^2+xy+1)\)
\(= x^2+xy-1-3x^2-xy-1\)
\(= (x^2-3x^2)+(xy-xy)-(1+1)\)
\(= -2x^2 - 2\)
tính giá trị các biểu thức sau(x,y,z≠≠\ne0 và x≠≠\ney): M=|x|x|x|x\dfrac{\left|x\right|}{x} |y|y|y|y\dfrac{\left|y\right|}{y} |z|z|z|z\dfrac{\left|z\right|}{z} |xyz|xyz|xyz|xyz\dfrac{\left|xyz\right|}{xyz} N=xy|xy|xy|xy|\dfrac{xy}{\left|xy\right|} x−y|x−y|x−y|x−y|\dfrac{x-y}{\left|x-y\right|} (x|x|x|x|\dfrac{x}{\left|x\right|}-y|y|y|y|\dfrac{y}{\left|y\right|})
Em nên viết đề bài bằng công thức toán học, có biểu tượng Σ góc trái màn hình. Như vậy thầy cô mới có thể hiểu đúng và đủ đề bài để trợ giúp tốt nhất cho học viên của Olm em nhé!
Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:
A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).
B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)
C. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)
D. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
g)(x+3y)(x-3y+2) h)(x+2y((x-2y+3) I)(x^2-xy+y^2)(x+y) J)(x^2-xy+y^2)(x+y) K)(5x-2y)(x^2-xy-1) L)(x^2y^2-xy+y)(x-y)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
Chung minh dang thuc:
A)(x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2) = 2x^3
B)x^3-y^3=(x-y)((x-y)^2-xy)
\(A,VT=x^3+y^3+x^3-y^3=2x^3=VP\\ B,VT=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2+2xy+y^2-xy\right)\\ =\left(x-y\right)\left[\left(x+y\right)^2-xy\right]=VP\)
Sửa câu b \(cm:x^3-y^3=\left(x-y\right)\left[\left(x+y\right)^2-xy\right]\)
Câu nào đúng trong các câu sau (với x, y không âm) ?
A. \(x\sqrt{y}-\sqrt{xy}=xy\left(1-\sqrt{xy}\right)\)
B. \(x\sqrt{y}-\sqrt{xy}=\sqrt{xy}\left(\sqrt{x}-1\right)\)
C. \(x\sqrt{y}-\sqrt{xy}=\sqrt{y}\left(x-1\right)\)
D. \(x\sqrt{y}-\sqrt{xy}=x\sqrt{y}\left(1-\sqrt{xy}\right)\)
xy+x+y+1=0
xy-x-y=0
xy-x-y-1=0
xy-x-y+1=0
xy+2x+y+11=0
xy+x+y+1=0
xy-x-y=0
xy-x-y-1=0
xy-x-y+1=0
xy+2x+y+11=0
Hướng dẫn thôi nhé:
Lời giải:
a)\(xy+x+y+1=0\)
\(\Rightarrow x\left(y+1\right)+1\left(y+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\)
b)\(xy-x-y=0\)
\(\Rightarrow xy-x-y+1=1\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
c)\(xy-x-y-1=0\)
\(\Rightarrow xy-x-y+1=2\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=2\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)
d) \(xy-x-y+1=0\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
e)\(xy+2x+y+11=0\)
\(\Rightarrow xy+2x+y+2=-9\)
\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=-9\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=-9\)
Rút gọn biểu thức:
\(\dfrac{x^2+xy}{x^2+xy+y^2}\) - [\(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}\) - 2 + \(\dfrac{y}{y-x}\)] : \(\dfrac{x-y}{x}\) - \(\dfrac{x}{x-y}\)
Ta có: \(\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\dfrac{y}{y-x}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\left(\dfrac{x\left(2x^2+xy-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{2\left(x^3-y^3\right)-y\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\right):\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x^2+xy}{x^2+xy+y^2}-\dfrac{2x^3+x^2y-xy^2-2x^3+2y^3-x^2y-xy^2-y^3}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}-\dfrac{y^3-2xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}:\dfrac{x-y}{x}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{y^2\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\cdot\dfrac{x}{x-y}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{x^2+xy+y^2}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x}{x-y}\)
\(=\dfrac{x\left(x^2-y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{x\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^3-xy^2+xy^2-x^3-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-x^2y-xy^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)