Cho N=1.2.3+2.3.4+...+n(n+1)(n+2). n thuộc N sao. Chứng minh 4N+1 chính phương
Cho A=1.2.3+2.3.4+3.4.5+......+n(n+1).n(n+2) (n thuộc N)
Chứng minh rằng:4A +1 là số chính phương
Cho N = 1.2.3 + 2.3.4+...+n(n+1)(n+2) . CMR : 4N+1 là số chính phương
Cho A=1.2.3+2.3.4+3.4.5+..n(n+1)(n+2)(n thuộc N
CMR:4A+1 là số chính phương
D=1.2 + 2.3 + 3.4 + ....+ n.(n+1) với n thuộc N sao . Chứng tỏ 3D là tích của 3 số tự nhiên liên tiếp
E= 1.2.3 + 2.3.4 + ..... + n.(n+1).(n+2)với n thuộc N sao
hãy chứng minh
tbc của 3 số là 96. tổng của stn và sth là 148. tbc của số thứ 1 và số thứ 3 là 75. tìm ba số
ai biết làm ko
Đề bài: Cho A = 1.2.3 + 2.3.4 + 3.4.5 + … + n.(n + 1).(n + 2). Chứng minh rằng: 4A + 1 là một số chính phương.
Ta có: n(n + 1)(n + 2) = n (n + 1)(n + 2). 4= n(n + 1)(n + 2).
= n(n + 1)(n + 2)(n + 3) - n(n + 1)(n + 2)(n - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + n( + 1)(n + 2)(n + 3)
- n(n + 1)(n + 2)(n - 1) = n(n + 1)(n + 2)(n + 3)
=> 4S + 1 = n(n + 1)(n + 2)(n + 3) + 1
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n^2+3n) (n^2+3n+2) (*)
Đặt n^2 +3n=t thì (*) = t(t + 2) + 1 = t^2 + 2t + 1 = (t + 1)^2
= (n2 + 3n + 1)^2
Vì n N nên n^2 + 3n + 1 N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương hau 4S +1 là scp
A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n^4+6.n^3+11.n^2+6n+1=(n2+3n+1)^2
Vậy Chứng minh rằng: 4A + 1 là một số chính phương.
Ta có: k(k + 1)(k + 2) = k (k + 1)(k + 2). 4= k(k + 1)(k + 2).
= k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3)
- k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
4S+1=k(k + 1)(k + 2)(k + 3) + 1 = k . ( k + 3)(k + 1)(k + 2) + 1
= (k2+3k)(k2+3n+2)+1 (*)
Đặt k2+3k=t thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (k2 + 3k + 1)2
Vậy 4A+1 là số chính phương.
cho N=1.2.3+2.3.4+....+n(n+1)(n+2)
cmr: 4N+1 là số chinh phương ∀n∈Z+
N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)
4N = n(n+1)(n+2)(n+3)
4N + 1 = ( n2 + 3n + 1)2 ( đpcm )
Cho A=1.2.3+2.3.4+...+n.(n+1).(n+2)
CMR:4A+1 là số chính phương
A=1.2.3+2.3.4+...+n.(n+1).(n+2)
=>4A=1.2.3.4+2.3.4.4+n(n+1)(n+2).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+n.(n+1)(n+2)[(n+3)-(n-1)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1)-n.(n+1).(n+2).(n+3)
=n.(n+1)(n+2)(n+3)
=>4A+1=n(n+1)(n+2)(n+3)+1
=n.(n+3).(n+1)(n+2)+1
=(n2+3n).[n.(n+2)+1.(n+2)]+1
=(n2+3n).(n2+2n+n+2)+1
=(n2+3n).(n2+3n+2)+1
Đặt y=n2+3n
=>4A+1=y.(y+2)+1
=y2+2y+1
=y2+y+y+1
=y.(y+1)+(y+1)
=(y+1)(y+1)
=(y+1)2
Vậy 4A+1 là số chính phương
Cho P = 1.2.3+2.3.4+3.4.5+...+n.(n+1)(n+2) với n \(\in\) N* chứng minh P là số chính phương.
Với \(n=1\Rightarrow P=6\)
\(n=2\Rightarrow P=30\)
Tất cả đều ko phải số chính phương
cho N=\(1.2.3+2.3.4+....+n\left(n+1\right)\left(n+2\right)\)
cmr: 4N+1 là số chinh phương \(\forall n\in Z^+\)