Những câu hỏi liên quan
H24
Xem chi tiết
PL
28 tháng 3 2019 lúc 20:36

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-\)\(2bc\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2ac+c^2\)\(+b^2-2bc+c^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)( luôn đúng với mọi a,b,c) đpcm

chúc bạn học tốt. mk cũng 2k5 nhé, kb mk

Bình luận (0)
H24
29 tháng 3 2019 lúc 19:59

Điều cần chứng minh tương đương với:

\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)

Suy ra đpcm.

Bình luận (0)
NH
Xem chi tiết
H24
1 tháng 11 2015 lúc 8:14

a^2-b^2-c^2-ab-ac-bc

=2a^2-2b^2-2c^2-2ab-2ac-2bc

=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)

=(a-b)^2+(b-c)^2+(a-c)^2

Ta có (a-b)^2 lớn hơn 0 hoặc bằng 0.        (b-c)^2 lớn hơn hoặc bằng 0

           (a-c)^2 lớn hơn hoặc bằng 0

=>(a-b^2+(b-c)^2+(a-c)^2 lớn hơn hoặc bằng 0

vậy a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0

           

Bình luận (0)
NV
10 tháng 3 2019 lúc 9:27

bạn trần ngọc mai sai rồi vì dấu "=" xảy ra <=>a=b=c mà đề bài cho a,b,c khác nhau mà bạn.

Bình luận (0)
BN
Xem chi tiết
H24
14 tháng 8 2017 lúc 8:52

a^2 hay a.2 thế

Bình luận (0)
BN
14 tháng 8 2017 lúc 9:00

a^2 bn ạ!!
 

Bình luận (0)
TD
Xem chi tiết
PN
5 tháng 8 2020 lúc 12:52

\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(< =>2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(< =>\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ca\right)\ge0\)

\(< =>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng mịnh

Bình luận (0)
 Khách vãng lai đã xóa
LD
5 tháng 8 2020 lúc 15:22

\(a^2+b^2+c^2-ab-ac-bc\ge0\)(*)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)( Đúng )

Vậy (*) đúng

=> đpcm

Dấu " = " xảy ra <=> a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
TD
5 tháng 8 2020 lúc 19:11

cảm ơn các cậu~

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
AH
17 tháng 8 2021 lúc 1:23

Lời giải:

Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$

$=(ad+bc)t$

Mà: 

$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$

Tương tự: $t> ac+bd$

Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:

$ab+cd> ad+bc, ac+bd> ad+bc$

Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý 

Do đó ta có đpcm.

 

Bình luận (0)
DM
Xem chi tiết
NK
27 tháng 12 2015 lúc 13:54

a = 2;b= (-2);c= 3

Thay : a+b+c=2+(-2)+3

                 .     =[2+(-2)]+3

                       =0+3=3

B)vì a và b là 2 số đối nhau nên ta có :

a =2;b= (-2) và là 2số đối nhau vì

|-2|=2

Bình luận (0)
HK
Xem chi tiết
NT
20 tháng 8 2023 lúc 14:23

Ta có :

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2bc-2ac\)

mà theo đề bài \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-\left(ab+bc+ac\right)=0\)

mà \(-\left(ab+bc+ac\right)\le0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow dpcm\)

Bình luận (0)
TP
Xem chi tiết
NT
8 tháng 6 2023 lúc 20:39

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Bình luận (0)
ND
8 tháng 6 2023 lúc 22:13

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)

=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)

=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]

vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

Bình luận (0)
DA
Xem chi tiết
PB
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Bình luận (0)
 Khách vãng lai đã xóa