Những câu hỏi liên quan
BB
Xem chi tiết
TH
10 tháng 3 2021 lúc 7:16

Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).

Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).

Áp dụng bất đẳng thức AM - GM ta có:

\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).

Tương tự với b, c. Ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
NP
8 tháng 12 2017 lúc 15:31

Biến đổi từ giả thuyết: 
a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

Bình luận (0)
NP
8 tháng 12 2017 lúc 15:32

Biến đổi từ giả thuyết: 
a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b ++c=0

=> Đpcm

Bình luận (1)
PN
Xem chi tiết
RZ
Xem chi tiết
RZ
Xem chi tiết
H24
21 tháng 9 2019 lúc 13:38

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)

Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+a^2c^2\)

nên \(a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2\left(ab+bc+ac\right)^2\)

\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\left(đpcm\right)\)

Bình luận (0)
RZ
22 tháng 9 2019 lúc 21:35

thanks

Bình luận (0)
BS
Xem chi tiết
OG
1 tháng 10 2019 lúc 13:04

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

\(=4\left(a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

\(=4\left(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(=4\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ac\right)^2\)

Bình luận (0)
PL
Xem chi tiết
AR
Xem chi tiết
NL
20 tháng 6 2019 lúc 16:19

Ta chứng minh được

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

Ta lại chứng minh được:

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)

\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đây là bài thi vào 10 của Thanh Hóa thì phải

Bình luận (1)
TH
Xem chi tiết
DK
28 tháng 6 2016 lúc 11:18

Ta có: \(a+b+c=0\)

\(\Rightarrow2abc\left(a+b+c\right)=0\)

\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)

Ta lại có:

\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)

\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)

\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+a^2bc+ab^2c+abc^2\right)\)

\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\left(đpcm\right)\)

(Nhớ k cho mình với nhoa!)

Bình luận (0)