Cho 3 số thực x,y,z biết x/y = y/z = z/x và x2017 - y2018 =0
Cho 3 số thực x,y,z biết x/y=y/z=z/x và x^2017-y^2018=0
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y;y=z;z=x\Leftrightarrow x=y=z\)
Theo bài ra, ta có: \(x^{2017}-y^{2018}=0\)
\(\Rightarrow x^{2018}-x^{2017}=0\)
\(\Leftrightarrow x^{2017}.\left(x-1\right)=0\Leftrightarrow\hept{\begin{cases}x=0\left(bỏ\right)\\x=1\end{cases}}\)
Vậy x = y = z = 1
Cho 3 số thực x,y,z biết x/y=y/z=z/x và x^2017-y^2018=0
Cho 3 số thực x,y,z biết:
x/y=y/z=z/x và x^2017-y^2018=0
theo t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y;y=z;z=x\Leftrightarrow x=y=z\)
theo bài ra ta có: \(x^{2017}-y^{2018}=0\)
\(\Rightarrow x^{2018}-x^{2017}=0\)
\(\Leftrightarrow x^{2017}\left(x-1\right)=0\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\left(loại\right)\\x=1\end{matrix}\right.\)
vậy x = y= z =1
cho x,y,z,t là 4 số thực khác 0 thỏa mãn y^2=xz,z^2=yt và y^3+z^3+t^ khác 0 cmR y^3+z^3+x^3/y^3+z^3+t^3=x/t
Tìm ba số thực x, y, z biết :
x/y=y/z=z/x và x^2017- y^2018=0
cho 3 số thực x,y,z>0 thỏa mãn xyz=1 và 1/x+1/y+1/z<x+y+z. Chứng minh rằng có chính xác 1 trong 3 số x, y, z lớn hơn 1
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Cho x,y,z là số thực tùy ý biết x+y+z=0 và -1≤x≤1; -1≤y≤1; -1≤z≤1
Chứng minh x2+y4+z6≤2
cho các số thực x, y, z thỏa mãn x+y+z=0 và x+2>0 ; y+2>0 ; z+8>0
cmr: \(\frac{x}{x+2}+\frac{y}{y+2}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
Dòng kế cuối sửa lại thành \(\frac{8\left(z+2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\) nhé.
bạn nhập tên giống 1 người IRAN đúng không ?
cho x y z là các số thực thỏa mãn điều kiện x+y+z=0 và xyz khác 0
Rút gọn phân thức B=\(\frac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{x^3+y^3+z^3}\)