Những câu hỏi liên quan
H24
Xem chi tiết
NL
30 tháng 3 2021 lúc 16:08

\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)

\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)

Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)

\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)

\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)

\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)

\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị

Bình luận (0)
BB
Xem chi tiết
LL
28 tháng 9 2021 lúc 20:32

Tham khảo:

Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24

Bình luận (0)
BB
Xem chi tiết
NC
11 tháng 2 2021 lúc 18:22

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

Bình luận (2)
NC
11 tháng 2 2021 lúc 18:33

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)

Bình luận (0)
NC
11 tháng 2 2021 lúc 18:34

Mik đã viết ra cả 2 cách nên bạn thấy cách nào dễ hiểu  thì làm cách đó

Bình luận (0)
NS
Xem chi tiết
NL
22 tháng 12 2022 lúc 23:46

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
NT
Xem chi tiết
AH
22 tháng 9 2021 lúc 7:41

Lời giải:

Áp dụng BĐT AM-GM:

$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$

$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$

$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:

$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$

Áp dụng BĐT Cauchy-Schwarz:

$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$

$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=2$

Bình luận (0)
PQ
Xem chi tiết
XX
Xem chi tiết
LD
12 tháng 4 2021 lúc 13:54

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)

Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)

Đẳng thức xảy ra <=> x = 2 ; y = z = 1

Bình luận (1)
TM
Xem chi tiết
2D
Xem chi tiết
TA
Xem chi tiết