Phân tích đa thức thành nhân tử :
(x2 + 6x – 1)2 + 2x2 + x4 + 2(x2 + 6x – 1)(x2 + 1)
Phân tích đa thức thành nhân tử : (x2 + 6x – 5)(x2 + 6x + 3) – 20
Ta có: (x2+6x-5)(x2+6x+3)-20
= [(x2+6x-1)-4][(x2+6x-1)+4]-20
= (x2+6x-1)2-16-20
= (x2+6x-1)2-36
= (x2+6x-7)(x2+6x-5)
= (x+7)(x-1)(x2+6x-5)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)\\ =\left(x^2+6x-1\right)^2-16-20\\ =\left(x^2+6x-1\right)^2-36\\ =\left(x^2+6x-1-6\right)\left(x^2+6x-1+6\right)\\ =\left(x^2+6x-7\right)\left(x^2+6x+5\right)\\ =\left(x-1\right)\left(x+7\right)\left(x+1\right)\left(x+5\right)\)
\(\left(x^2+6x-5\right)\left(x^2+6x+3\right)-20\)
\(=\left(x^2+6x\right)^2-2\left(x^2+6x\right)-35\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+5\right)\)
\(=\left(x+7\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử :
a) 5x2 – 4(x2 – 2x + 1) – 5
b) 9x2 + 6x – 4y2 + 4y
a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)
a: \(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
b: \(9x^2+6x-4y^2+4y\)
\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)
\(=\left(3x+2y\right)\left(3x-2y+2\right)\)
Phân tích đa thức thành nhân tử : (x2 + 6x + 9)3 - y6
\(=\left(x+3\right)^6-y^6\\ =\left[\left(x+3\right)^3-y^3\right]\left[\left(x+3\right)^3+y^3\right]\\ =\left(x+3-y\right)\left[\left(x+3\right)^2+y\left(x+3\right)+y^2\right]\left(x+3+y\right)\left[\left(x+3\right)^2-y\left(x+3\right)+y^2\right]\\ =\left(x+y+3\right)\left(x-y+3\right)\left(x^2+6x+9+xy+3y+y^2\right)\left(x^2+6x+9-xy-3y+y^2\right)\)
\(\left(x^2+6x+9\right)^3-\left(y^2\right)^3=\left(x^2+6x+9-y^2\right)\left[\left(x^2+6x+9\right)^2+\left(x^2+6x+9\right)y^2+y^4\right]\)
\(=\left[\left(x+3\right)^2-y^2\right]\left\{\left[\left(x^2+6x+9\right)^2+2\left(x^2+6x+9\right)y^2+y^4\right]-\left(x^2+6x+9\right)y^2\right\}\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)^2-\left(x+3\right)^2y^2\right]\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left[\left(x^2+6x+9+y^2\right)-\left(x+3\right)y\right]\left(x^2+6x+9+y^2\right)+\left(x+3\right)y\)
\(=\left(x+3-y\right)\left(x+3+y\right)\left(x^2+6x+9+y^2-xy-3y\right)\left(x^2+6x+9+y^2+xy+3y\right)\)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : (1 + x2)2 – 4x(1 – x2)
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
Phân tích đa thức sau thành nhân tử : x2(x + 4)2 – (x + 4)2 – (x2 – 1)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)
\(=(x+4-1)(x+4+1)(x-1)(x+1)\)
\(=(x+3)(x+5)(x-1)(x+1)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)
Phân tích đa thức thành nhân tử : x4 + 6x3 + 11x2 + 6x + 1
\(x^4+6x^3+11x^2+6x+1\)
\(=x^4+3x^3+x^2+3x^3+9x^2+3x+x^2+3x+1\)
\(=\left(x^2+3x+1\right)^2\)
Phân tích đa thức thành nhân tử : x4 + 6x3 + 7x2 – 6x + 1
\(x^4+6x^3+7x^2-6x+1\)
\(=x^4-2x^2+1+6x^3+9x^2-6x\)
\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)
\(=\left(x^2+3x-1\right)^2\)
Phân tích đa thức thành nhân tử : x4 + x3 + 2x2 + x + 1
\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
\(x^4+x^3+2x^2+x+1\)
\(=x^4+x^3+x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^2+1\right)\)